These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


237 related items for PubMed ID: 23325232

  • 21. The Drosophila transcription factor Adf-1 (nalyot) regulates dendrite growth by controlling FasII and Staufen expression downstream of CaMKII and neural activity.
    Timmerman C, Suppiah S, Gurudatta BV, Yang J, Banerjee C, Sandstrom DJ, Corces VG, Sanyal S.
    J Neurosci; 2013 Jul 17; 33(29):11916-31. PubMed ID: 23864680
    [Abstract] [Full Text] [Related]

  • 22. BRCA1-BARD1 Regulates Axon Regeneration in Concert with the Gqα-DAG Signaling Network.
    Sakai Y, Hanafusa H, Shimizu T, Pastuhov SI, Hisamoto N, Matsumoto K.
    J Neurosci; 2021 Mar 31; 41(13):2842-2853. PubMed ID: 33593852
    [Abstract] [Full Text] [Related]

  • 23. The EGL-30 pathway regulates experience-dependent aversive behavior of Caenorhabditis elegans to the pathogenic bacterium Pseudomonas aeruginosa.
    Wu N, Chen YA, Zhu Q, Son CH, Gu KZ, Zou CG, Wu QY, Ma YC.
    Biochem Biophys Res Commun; 2023 Jan 29; 642():107-112. PubMed ID: 36566561
    [Abstract] [Full Text] [Related]

  • 24. Caenorhabditis elegans Galphaq regulates egg-laying behavior via a PLCbeta-independent and serotonin-dependent signaling pathway and likely functions both in the nervous system and in muscle.
    Bastiani CA, Gharib S, Simon MI, Sternberg PW.
    Genetics; 2003 Dec 29; 165(4):1805-22. PubMed ID: 14704167
    [Abstract] [Full Text] [Related]

  • 25. A distributed chemosensory circuit for oxygen preference in C. elegans.
    Chang AJ, Chronis N, Karow DS, Marletta MA, Bargmann CI.
    PLoS Biol; 2006 Sep 29; 4(9):e274. PubMed ID: 16903785
    [Abstract] [Full Text] [Related]

  • 26. Sensory regulated Wnt production from neurons helps make organ development robust to environmental changes in C. elegans.
    Modzelewska K, Brown L, Culotti J, Moghal N.
    Development; 2020 Jul 23; 147(14):. PubMed ID: 32586974
    [Abstract] [Full Text] [Related]

  • 27. Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans.
    Matsuki M, Kunitomo H, Iino Y.
    Proc Natl Acad Sci U S A; 2006 Jan 24; 103(4):1112-7. PubMed ID: 16418272
    [Abstract] [Full Text] [Related]

  • 28. Gαo and Gαq regulate the expression of daf-7, a TGFβ-like gene, in Caenorhabditis elegans.
    Myers EM.
    PLoS One; 2012 Jan 24; 7(7):e40368. PubMed ID: 22808145
    [Abstract] [Full Text] [Related]

  • 29. The monoaminergic modulation of sensory-mediated aversive responses in Caenorhabditis elegans requires glutamatergic/peptidergic cotransmission.
    Harris G, Mills H, Wragg R, Hapiak V, Castelletto M, Korchnak A, Komuniecki RW.
    J Neurosci; 2010 Jun 09; 30(23):7889-99. PubMed ID: 20534837
    [Abstract] [Full Text] [Related]

  • 30. Phosphorylation and activation of tryptophan hydroxylase 2: identification of serine-19 as the substrate site for calcium, calmodulin-dependent protein kinase II.
    Kuhn DM, Sakowski SA, Geddes TJ, Wilkerson C, Haycock JW.
    J Neurochem; 2007 Nov 09; 103(4):1567-73. PubMed ID: 17727633
    [Abstract] [Full Text] [Related]

  • 31. Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin.
    Cao X, Wang X, Chen H, Li H, Tariq M, Wang C, Zhou Y, Liu Y.
    Environ Pollut; 2019 Jan 09; 244():947-957. PubMed ID: 30469289
    [Abstract] [Full Text] [Related]

  • 32. Resistance to volatile anesthetics by mutations enhancing excitatory neurotransmitter release in Caenorhabditis elegans.
    Hawasli AH, Saifee O, Liu C, Nonet ML, Crowder CM.
    Genetics; 2004 Oct 09; 168(2):831-43. PubMed ID: 15514057
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Neuronal Activity and CaMKII Regulate Kinesin-Mediated Transport of Synaptic AMPARs.
    Hoerndli FJ, Wang R, Mellem JE, Kallarackal A, Brockie PJ, Thacker C, Madsen DM, Maricq AV.
    Neuron; 2015 Apr 22; 86(2):457-74. PubMed ID: 25843407
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Identification of substrate orienting and phosphorylation sites within tryptophan hydroxylase using homology-based molecular modeling.
    Jiang GC, Yohrling GJ, Schmitt JD, Vrana KE.
    J Mol Biol; 2000 Sep 29; 302(4):1005-17. PubMed ID: 10993738
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.