These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Kinetics and equilibrium studies of Tet repressor-operator interaction. Kedracka-Krok S, Wasylewski Z. J Protein Chem; 1999 Jan; 18(1):117-25. PubMed ID: 10071936 [Abstract] [Full Text] [Related]
3. Dynamics of repressor-operator recognition: the Tn10-encoded tetracycline resistance control. Kleinschmidt C, Tovar K, Hillen W, Porschke D. Biochemistry; 1988 Feb 23; 27(4):1094-104. PubMed ID: 2835082 [Abstract] [Full Text] [Related]
4. Fluorescence and phosphorescence study of Tet repressor-operator interaction. Kuszaj S, Kaszycki P, Wasylewski Z. J Protein Chem; 1999 Feb 23; 18(2):147-56. PubMed ID: 10333287 [Abstract] [Full Text] [Related]
9. Thermodynamic analysis of tetracycline-mediated induction of Tet repressor by a quantitative methylation protection assay. Lederer T, Takahashi M, Hillen W. Anal Biochem; 1995 Dec 10; 232(2):190-6. PubMed ID: 8747474 [Abstract] [Full Text] [Related]
11. Affinity and specificity of trp repressor-DNA interactions studied with fluorescent oligonucleotides. Reedstrom RJ, Brown MP, Grillo A, Roen D, Royer CA. J Mol Biol; 1997 Oct 31; 273(3):572-85. PubMed ID: 9356247 [Abstract] [Full Text] [Related]
12. Allosteric control of cAMP receptor binding dynamics. Porschke D. Biochemistry; 2012 May 15; 51(19):4028-34. PubMed ID: 22554101 [Abstract] [Full Text] [Related]
13. Salt dependence of the kinetics of the lac repressor-operator interaction: role of nonoperator deoxyribonucleic acid in the association reaction. Barkley MD. Biochemistry; 1981 Jun 23; 20(13):3833-42. PubMed ID: 7023537 [Abstract] [Full Text] [Related]
14. Analysis of ion concentration effects of the kinetics of protein-nucleic acid interactions. Application to lac repressor-operator interactions. Lohman TM, DeHaseth PL, Record MT. Biophys Chem; 1978 Sep 23; 8(4):281-94. PubMed ID: 728535 [Abstract] [Full Text] [Related]
15. Kinetic mechanism of rat polymerase beta-dsDNA interactions. Fluorescence stopped-flow analysis of the cooperative ligand binding to a two-site one-dimensional lattice. Galletto R, Jezewska MJ, Bujalowski W. Biochemistry; 2005 Feb 01; 44(4):1251-67. PubMed ID: 15667219 [Abstract] [Full Text] [Related]
17. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions. Glasfeld A, Koehler AN, Schumacher MA, Brennan RG. J Mol Biol; 1999 Aug 13; 291(2):347-61. PubMed ID: 10438625 [Abstract] [Full Text] [Related]
18. Probing the kinetics of formation of the bacteriophage MS2 translational operator complex: identification of a protein conformer unable to bind RNA. Lago H, Parrott AM, Moss T, Stonehouse NJ, Stockley PG. J Mol Biol; 2001 Feb 02; 305(5):1131-44. PubMed ID: 11162119 [Abstract] [Full Text] [Related]
19. Probing the physical basis for trp repressor-operator recognition. Grillo AO, Brown MP, Royer CA. J Mol Biol; 1999 Apr 02; 287(3):539-54. PubMed ID: 10092458 [Abstract] [Full Text] [Related]
20. Preferential interactions of the Escherichia coli LexA repressor with anions and protons are coupled to binding the recA operator. Relan NK, Jenuwine ES, Gumbs OH, Shaner SL. Biochemistry; 1997 Feb 04; 36(5):1077-84. PubMed ID: 9033397 [Abstract] [Full Text] [Related] Page: [Next] [New Search]