These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
344 related items for PubMed ID: 23329141
21. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Zhu Z, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YH. Biotechnol Bioeng; 2009 Jul 01; 103(4):715-24. PubMed ID: 19337984 [Abstract] [Full Text] [Related]
22. Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Li X, Kim TH, Nghiem NP. Bioresour Technol; 2010 Aug 01; 101(15):5910-6. PubMed ID: 20338749 [Abstract] [Full Text] [Related]
23. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Chundawat SP, Venkatesh B, Dale BE. Biotechnol Bioeng; 2007 Feb 01; 96(2):219-31. PubMed ID: 16903002 [Abstract] [Full Text] [Related]
24. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. He X, Miao Y, Jiang X, Xu Z, Ouyang P. Appl Biochem Biotechnol; 2010 Apr 01; 160(8):2449-57. PubMed ID: 19669940 [Abstract] [Full Text] [Related]
25. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Selig MJ, Vinzant TB, Himmel ME, Decker SR. Appl Biochem Biotechnol; 2009 May 01; 155(1-3):397-406. PubMed ID: 19214798 [Abstract] [Full Text] [Related]
26. Effect of structural features on enzyme digestibility of corn stover. Kim S, Holtzapple MT. Bioresour Technol; 2006 Mar 01; 97(4):583-91. PubMed ID: 15961307 [Abstract] [Full Text] [Related]
27. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Yang B, Wyman CE. Biotechnol Bioeng; 2006 Jul 05; 94(4):611-7. PubMed ID: 16673419 [Abstract] [Full Text] [Related]
28. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1). Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang CP, Sherman DM. Biotechnol Bioeng; 2012 Feb 05; 109(2):390-7. PubMed ID: 21928336 [Abstract] [Full Text] [Related]
29. Effective Saccharification of Corn Stover Using Low-Liquid Aqueous Ammonia Pretreatment and Enzymatic Hydrolysis. Truong NPV, Kim TH. Molecules; 2018 May 01; 23(5):. PubMed ID: 29723965 [Abstract] [Full Text] [Related]
30. Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, beta-glucosidase, and hemicellulase preparations. Prior BA, Day DF. Appl Biochem Biotechnol; 2008 Mar 01; 146(1-3):151-64. PubMed ID: 18421595 [Abstract] [Full Text] [Related]
31. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Kumar R, Wyman CE. Biotechnol Bioeng; 2009 Apr 15; 102(6):1544-57. PubMed ID: 19170246 [Abstract] [Full Text] [Related]
32. Two-stage fractionation of corn stover using aqueous ammonia and hot water. Yoo CG, Lee CW, Kim TH. Appl Biochem Biotechnol; 2011 Jul 15; 164(6):729-40. PubMed ID: 21274655 [Abstract] [Full Text] [Related]
33. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Banerjee G, Car S, Liu T, Williams DL, Meza SL, Walton JD, Hodge DB. Biotechnol Bioeng; 2012 Apr 15; 109(4):922-31. PubMed ID: 22125119 [Abstract] [Full Text] [Related]
34. Enzymatic production of xylooligosaccharides from corn stover and corn cobs treated with aqueous ammonia. Zhu Y, Kim TH, Lee YY, Chen R, Elander RT. Appl Biochem Biotechnol; 2006 Apr 15; 129-132():586-98. PubMed ID: 16915671 [Abstract] [Full Text] [Related]
35. Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan and corn stover with water. Yang B, Wyman CE. Bioresour Technol; 2008 Sep 15; 99(13):5756-62. PubMed ID: 18096381 [Abstract] [Full Text] [Related]
36. Lignin-based polyoxyethylene ether enhanced enzymatic hydrolysis of lignocelluloses by dispersing cellulase aggregates. Lin X, Qiu X, Yuan L, Li Z, Lou H, Zhou M, Yang D. Bioresour Technol; 2015 Jun 15; 185():165-70. PubMed ID: 25768419 [Abstract] [Full Text] [Related]
37. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: SEM imaging (part 2). Zeng M, Ximenes E, Ladisch MR, Mosier NS, Vermerris W, Huang CP, Sherman DM. Biotechnol Bioeng; 2012 Feb 15; 109(2):398-404. PubMed ID: 21928340 [Abstract] [Full Text] [Related]
38. Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids. Wu H, Mora-Pale M, Miao J, Doherty TV, Linhardt RJ, Dordick JS. Biotechnol Bioeng; 2011 Dec 15; 108(12):2865-75. PubMed ID: 21769858 [Abstract] [Full Text] [Related]
39. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Kumar R, Wyman CE. Biotechnol Bioeng; 2009 Jun 01; 103(2):252-67. PubMed ID: 19195015 [Abstract] [Full Text] [Related]
40. Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Zhu Y, Lee YY, Elander RT. Appl Biochem Biotechnol; 2007 Apr 01; 137-140(1-12):721-38. PubMed ID: 18478429 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]