These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


368 related items for PubMed ID: 23329435

  • 41. Effect of surface conduction-induced electromigration on current monitoring method for electroosmotic flow measurement.
    Babar M, Dubey K, Bahga SS.
    Electrophoresis; 2020 Apr; 41(7-8):570-577. PubMed ID: 31661562
    [Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S, Zhu J, Hu G, Xuan X.
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.
    Peng R, Li D.
    J Colloid Interface Sci; 2015 Feb 15; 440():126-32. PubMed ID: 25460698
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Gradient elution in microchannel electrochromatography.
    Watson MW, Mudrik JM, Wheeler AR.
    Anal Chem; 2009 May 15; 81(10):3851-7. PubMed ID: 19438263
    [Abstract] [Full Text] [Related]

  • 50. Electrolysis-reducing electrodes for electrokinetic devices.
    Erlandsson PG, Robinson ND.
    Electrophoresis; 2011 Mar 15; 32(6-7):784-90. PubMed ID: 21425174
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D, Tenny J, Webbd BW, Lee ML.
    Electrophoresis; 2008 Feb 15; 29(3):549-60. PubMed ID: 18200632
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Numerical studies of continuous nutrient delivery for tumour spheroid culture in a microchannel by electrokinetically-induced pressure-driven flow.
    Movahed S, Li D.
    Biomed Microdevices; 2010 Dec 15; 12(6):1061-72. PubMed ID: 20689992
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient.
    Miller A, Villegas A, Diez FJ.
    Electrophoresis; 2015 Mar 15; 36(5):692-702. PubMed ID: 25502599
    [Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Microfluidic flow counterbalanced capillary electrophoresis.
    Xia L, Dutta D.
    Analyst; 2013 Apr 07; 138(7):2126-33. PubMed ID: 23420375
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.