These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 23331279

  • 1. Retinal β-ionone ring-salinixanthin interactions in xanthorhodopsin: a study using artificial pigments.
    Smolensky Koganov E, Hirshfeld A, Sheves M.
    Biochemistry; 2013 Feb 19; 52(7):1290-301. PubMed ID: 23331279
    [Abstract] [Full Text] [Related]

  • 2. Retinal-salinixanthin interactions in xanthorhodopsin: [corrected] a circular dichroism (CD) spectroscopy study with artificial pigments.
    Smolensky E, Sheves M.
    Biochemistry; 2009 Sep 01; 48(34):8179-88. PubMed ID: 19637932
    [Abstract] [Full Text] [Related]

  • 3. Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin.
    Balashov SP, Imasheva ES, Lanyi JK.
    Biochemistry; 2006 Sep 12; 45(36):10998-1004. PubMed ID: 16953586
    [Abstract] [Full Text] [Related]

  • 4. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna.
    Imasheva ES, Balashov SP, Choi AR, Jung KH, Lanyi JK.
    Biochemistry; 2009 Nov 24; 48(46):10948-55. PubMed ID: 19842712
    [Abstract] [Full Text] [Related]

  • 5. Origin of circular dichroism of xanthorhodopsin. A study with artificial pigments.
    Smolensky Koganov E, Brumfeld V, Friedman N, Sheves M.
    J Phys Chem B; 2015 Jan 15; 119(2):456-64. PubMed ID: 25494883
    [Abstract] [Full Text] [Related]

  • 6. Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex.
    Iyer ES, Gdor I, Eliash T, Sheves M, Ruhman S.
    J Phys Chem B; 2015 Feb 12; 119(6):2345-9. PubMed ID: 25144664
    [Abstract] [Full Text] [Related]

  • 7. Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group.
    Balashov SP, Imasheva ES, Choi AR, Jung KH, Liaaen-Jensen S, Lanyi JK.
    Biochemistry; 2010 Nov 16; 49(45):9792-9. PubMed ID: 20942439
    [Abstract] [Full Text] [Related]

  • 8. Removal and reconstitution of the carotenoid antenna of xanthorhodopsin.
    Imasheva ES, Balashov SP, Wang JM, Lanyi JK.
    J Membr Biol; 2011 Jan 16; 239(1-2):95-104. PubMed ID: 21104180
    [Abstract] [Full Text] [Related]

  • 9. Investigating excited state dynamics of salinixanthin and xanthorhodopsin in the near-infrared.
    Gdor I, Zhu J, Loevsky B, Smolensky E, Friedman N, Sheves M, Ruhman S.
    Phys Chem Chem Phys; 2011 Mar 07; 13(9):3782-7. PubMed ID: 21183996
    [Abstract] [Full Text] [Related]

  • 10. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin.
    Polívka T, Balashov SP, Chábera P, Imasheva ES, Yartsev A, Sundström V, Lanyi JK.
    Biophys J; 2009 Mar 18; 96(6):2268-77. PubMed ID: 19289053
    [Abstract] [Full Text] [Related]

  • 11. Photoselective ultrafast investigation of xanthorhodopsin and its carotenoid antenna salinixanthin.
    Zhu J, Gdor I, Smolensky E, Friedman N, Sheves M, Ruhman S.
    J Phys Chem B; 2010 Mar 04; 114(8):3038-45. PubMed ID: 20146526
    [Abstract] [Full Text] [Related]

  • 12. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna.
    Balashov SP, Imasheva ES, Boichenko VA, Antón J, Wang JM, Lanyi JK.
    Science; 2005 Sep 23; 309(5743):2061-4. PubMed ID: 16179480
    [Abstract] [Full Text] [Related]

  • 13. Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin.
    Balashov SP, Imasheva ES, Wang JM, Lanyi JK.
    Biophys J; 2008 Sep 23; 95(5):2402-14. PubMed ID: 18515390
    [Abstract] [Full Text] [Related]

  • 14. The chirality origin of retinal-carotenoid complex in gloeobacter rhodopsin: a temperature-dependent excitonic coupling.
    Jana S, Jung KH, Sheves M.
    Sci Rep; 2020 Aug 19; 10(1):13992. PubMed ID: 32814821
    [Abstract] [Full Text] [Related]

  • 15. Retinal-Salinixanthin Interactions in a Thermophilic Rhodopsin.
    Misra R, Eliash T, Sudo Y, Sheves M.
    J Phys Chem B; 2019 Jan 10; 123(1):10-20. PubMed ID: 30525616
    [Abstract] [Full Text] [Related]

  • 16. Chromophore interaction in xanthorhodopsin--retinal dependence of salinixanthin binding.
    Imasheva ES, Balashov SP, Wang JM, Smolensky E, Sheves M, Lanyi JK.
    Photochem Photobiol; 2008 Jan 10; 84(4):977-84. PubMed ID: 18399915
    [Abstract] [Full Text] [Related]

  • 17. Retinal Binding to Apo-Gloeobacter Rhodopsin: The Role of pH and Retinal-Carotenoid Interaction.
    Jana S, Eliash T, Jung KH, Sheves M.
    J Phys Chem B; 2017 Dec 07; 121(48):10759-10769. PubMed ID: 29111729
    [Abstract] [Full Text] [Related]

  • 18. Xanthorhodopsin: a bacteriorhodopsin-like proton pump with a carotenoid antenna.
    Lanyi JK, Balashov SP.
    Biochim Biophys Acta; 2008 Dec 07; 1777(7-8):684-8. PubMed ID: 18515067
    [Abstract] [Full Text] [Related]

  • 19. Na+-Translocating Rhodopsin from Dokdonia sp. PRO95 Does Not Contain Carotenoid Antenna.
    Bertsova YV, Arutyunyan AM, Bogachev AV.
    Biochemistry (Mosc); 2016 Apr 07; 81(4):414-9. PubMed ID: 27293099
    [Abstract] [Full Text] [Related]

  • 20. Electronic coulombic coupling of excitation-energy transfer in xanthorhodopsin.
    Fujimoto KJ, Hayashi S.
    J Am Chem Soc; 2009 Oct 14; 131(40):14152-3. PubMed ID: 19772318
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.