These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 23333587

  • 1. Hydroxylation of lithocholic acid by selected actinobacteria and filamentous fungi.
    Kollerov VV, Monti D, Deshcherevskaya NO, Lobastova TG, Ferrandi EE, Larovere A, Gulevskaya SA, Riva S, Donova MV.
    Steroids; 2013 Mar; 78(3):370-8. PubMed ID: 23333587
    [Abstract] [Full Text] [Related]

  • 2. Deoxycholic acid transformations catalyzed by selected filamentous fungi.
    Kollerov VV, Lobastova TG, Monti D, Deshcherevskaya NO, Ferrandi EE, Fronza G, Riva S, Donova MV.
    Steroids; 2016 Mar; 107():20-9. PubMed ID: 26718089
    [Abstract] [Full Text] [Related]

  • 3. Further observations on the in vitro metabolism of chenodeoxycholic acid and ursodeoxycholic acid.
    Albini E, Marca G, Mellerio G.
    Arzneimittelforschung; 1982 Mar; 32(12):1554-7. PubMed ID: 6891595
    [Abstract] [Full Text] [Related]

  • 4. Comparative formation of lithocholic acid from chenodeoxycholic and ursodeoxycholic acids in the colon.
    Bazzoli F, Fromm H, Sarva RP, Sembrat RF, Ceryak S.
    Gastroenterology; 1982 Oct; 83(4):753-60. PubMed ID: 7106506
    [Abstract] [Full Text] [Related]

  • 5. Engineering Regioselectivity of a P450 Monooxygenase Enables the Synthesis of Ursodeoxycholic Acid via 7β-Hydroxylation of Lithocholic Acid.
    Grobe S, Badenhorst CPS, Bayer T, Hamnevik E, Wu S, Grathwol CW, Link A, Koban S, Brundiek H, Großjohann B, Bornscheuer UT.
    Angew Chem Int Ed Engl; 2021 Jan 11; 60(2):753-757. PubMed ID: 33085147
    [Abstract] [Full Text] [Related]

  • 6. Transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal bacteria.
    Fedorowski T, Salen G, Tint GS, Mosbach E.
    Gastroenterology; 1979 Nov 11; 77(5):1068-73. PubMed ID: 488633
    [Abstract] [Full Text] [Related]

  • 7. In vitro transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal flora, with particular reference to the mutual conversion between the two bile acids.
    Hirano S, Masuda N, Oda H.
    J Lipid Res; 1981 Jul 11; 22(5):735-43. PubMed ID: 7288282
    [Abstract] [Full Text] [Related]

  • 8. Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces.
    Fukiya S, Arata M, Kawashima H, Yoshida D, Kaneko M, Minamida K, Watanabe J, Ogura Y, Uchida K, Itoh K, Wada M, Ito S, Yokota A.
    FEMS Microbiol Lett; 2009 Apr 11; 293(2):263-70. PubMed ID: 19243441
    [Abstract] [Full Text] [Related]

  • 9. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid.
    Májer F, Sharma R, Mullins C, Keogh L, Phipps S, Duggan S, Kelleher D, Keely S, Long A, Radics G, Wang J, Gilmer JF.
    Bioorg Med Chem; 2014 Jan 01; 22(1):256-68. PubMed ID: 24332653
    [Abstract] [Full Text] [Related]

  • 10. Comparative transcriptome analysis of the fungus Gibberella zeae transforming lithocholic acid into ursodeoxycholic acid.
    Yang B, Zha R, Zhao W, Gong D, Meng X, Zhang Z, Zhu L, Qi N, Wang B.
    Biotechnol Lett; 2021 Feb 01; 43(2):415-422. PubMed ID: 33179169
    [Abstract] [Full Text] [Related]

  • 11. Strain-dependent induction of primary bile acid 7-dehydroxylation by cholic acid.
    Vico-Oton E, Volet C, Jacquemin N, Dong Y, Hapfelmeier S, Meibom KL, Bernier-Latmani R.
    BMC Microbiol; 2024 Aug 01; 24(1):286. PubMed ID: 39090543
    [Abstract] [Full Text] [Related]

  • 12. Enrichment of the more hydrophilic bile acid ursodeoxycholic acid in the fecal water-soluble fraction after feeding to rats with colon polyps.
    Batta AK, Salen G, Holubec H, Brasitus TA, Alberts D, Earnest DL.
    Cancer Res; 1998 Apr 15; 58(8):1684-7. PubMed ID: 9563483
    [Abstract] [Full Text] [Related]

  • 13. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver.
    Benedetti A, Alvaro D, Bassotti C, Gigliozzi A, Ferretti G, La Rosa T, Di Sario A, Baiocchi L, Jezequel AM.
    Hepatology; 1997 Jul 15; 26(1):9-21. PubMed ID: 9214446
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-lipase-negative Clostridia.
    Edenharder R, Knaflic T.
    J Lipid Res; 1981 May 15; 22(4):652-8. PubMed ID: 7276738
    [Abstract] [Full Text] [Related]

  • 17. A fungal P450 enzyme from Fusarium equiseti HG18 with 7β-hydroxylase activity in biosynthesis of ursodeoxycholic acid.
    Zhou ZR, Liu F, Li S, Dong CZ, Zhang L.
    J Steroid Biochem Mol Biol; 2024 Jun 15; 240():106507. PubMed ID: 38508471
    [Abstract] [Full Text] [Related]

  • 18. Conversion of 7-ketolithocholic acid to ursodeoxycholic acid by human intestinal anaerobic microorganisms: interchangeability of chenodeoxycholic acid and ursodeoxycholic acid.
    Higashi S, Setoguchi T, Katsuki T.
    Gastroenterol Jpn; 1979 Oct 15; 14(5):417-24. PubMed ID: 520764
    [Abstract] [Full Text] [Related]

  • 19. Biotransformation of bile acids by pathogenic actinomycetes Nocardia otitidiscaviarum and Amycolatopsis sp. strains.
    Mukai A, Yazawa K, Mikami Y, Harada K, Gräfe U.
    J Antibiot (Tokyo); 2005 May 15; 58(5):356-60. PubMed ID: 16060390
    [Abstract] [Full Text] [Related]

  • 20. Extrahepatic deposition and cytotoxicity of lithocholic acid: studies in two hamster models of hepatic failure and in cultured human fibroblasts.
    Ceryak S, Bouscarel B, Malavolti M, Fromm H.
    Hepatology; 1998 Feb 15; 27(2):546-56. PubMed ID: 9462656
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.