These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 23334020

  • 1. Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus.
    Li F, Ren S, Zhang W, Xu Z, Xie G, Chen Y, Tu Y, Li Q, Zhou S, Li Y, Tu F, Liu L, Wang Y, Jiang J, Qin J, Li S, Li Q, Jing HC, Zhou F, Gutterson N, Peng L.
    Bioresour Technol; 2013 Feb; 130():629-37. PubMed ID: 23334020
    [Abstract] [Full Text] [Related]

  • 2. Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus.
    Zhang W, Yi Z, Huang J, Li F, Hao B, Li M, Hong S, Lv Y, Sun W, Ragauskas A, Hu F, Peng J, Peng L.
    Bioresour Technol; 2013 Feb; 130():30-7. PubMed ID: 23298647
    [Abstract] [Full Text] [Related]

  • 3. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments.
    Si S, Chen Y, Fan C, Hu H, Li Y, Huang J, Liao H, Hao B, Li Q, Peng L, Tu Y.
    Bioresour Technol; 2015 May; 183():248-54. PubMed ID: 25746301
    [Abstract] [Full Text] [Related]

  • 4. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus.
    Xu N, Zhang W, Ren S, Liu F, Zhao C, Liao H, Xu Z, Huang J, Li Q, Tu Y, Yu B, Wang Y, Jiang J, Qin J, Peng L.
    Biotechnol Biofuels; 2012 Aug 11; 5(1):58. PubMed ID: 22883929
    [Abstract] [Full Text] [Related]

  • 5. Distinct Geographical Distribution of the Miscanthus Accessions with Varied Biomass Enzymatic Saccharification.
    Li X, Liao H, Fan C, Hu H, Li Y, Li J, Yi Z, Cai X, Peng L, Tu Y.
    PLoS One; 2016 Aug 11; 11(8):e0160026. PubMed ID: 27532636
    [Abstract] [Full Text] [Related]

  • 6. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.
    Li F, Zhang M, Guo K, Hu Z, Zhang R, Feng Y, Yi X, Zou W, Wang L, Wu C, Tian J, Lu T, Xie G, Peng L.
    Plant Biotechnol J; 2015 May 11; 13(4):514-25. PubMed ID: 25418842
    [Abstract] [Full Text] [Related]

  • 7. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse.
    Li M, Feng S, Wu L, Li Y, Fan C, Zhang R, Zou W, Tu Y, Jing HC, Li S, Peng L.
    Bioresour Technol; 2014 Sep 11; 167():14-23. PubMed ID: 24968107
    [Abstract] [Full Text] [Related]

  • 8. Ammonium oxalate-extractable uronic acids positively affect biomass enzymatic digestibility by reducing lignocellulose crystallinity in Miscanthus.
    Wang Y, Huang J, Li Y, Xiong K, Wang Y, Li F, Liu M, Wu Z, Tu Y, Peng L.
    Bioresour Technol; 2015 Nov 11; 196():391-8. PubMed ID: 26257050
    [Abstract] [Full Text] [Related]

  • 9. Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in corn.
    Jia J, Yu B, Wu L, Wang H, Wu Z, Li M, Huang P, Feng S, Chen P, Zheng Y, Peng L.
    PLoS One; 2014 Nov 11; 9(9):e108449. PubMed ID: 25251456
    [Abstract] [Full Text] [Related]

  • 10. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants.
    Wu Z, Zhang M, Wang L, Tu Y, Zhang J, Xie G, Zou W, Li F, Guo K, Li Q, Gao C, Peng L.
    Biotechnol Biofuels; 2013 Dec 16; 6(1):183. PubMed ID: 24341349
    [Abstract] [Full Text] [Related]

  • 11. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum.
    Huang Y, Wei X, Zhou S, Liu M, Tu Y, Li A, Chen P, Wang Y, Zhang X, Tai H, Peng L, Xia T.
    Bioresour Technol; 2015 Apr 16; 181():224-30. PubMed ID: 25656866
    [Abstract] [Full Text] [Related]

  • 12. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed.
    Pei Y, Li Y, Zhang Y, Yu C, Fu T, Zou J, Tu Y, Peng L, Chen P.
    Bioresour Technol; 2016 Mar 16; 203():325-33. PubMed ID: 26748046
    [Abstract] [Full Text] [Related]

  • 13. The minor wall-networks between monolignols and interlinked-phenolics predominantly affect biomass enzymatic digestibility in Miscanthus.
    Li Z, Zhao C, Zha Y, Wan C, Si S, Liu F, Zhang R, Li F, Yu B, Yi Z, Xu N, Peng L, Li Q.
    PLoS One; 2014 Mar 16; 9(8):e105115. PubMed ID: 25133694
    [Abstract] [Full Text] [Related]

  • 14. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.
    Sills DL, Gossett JM.
    Biotechnol Bioeng; 2012 Apr 16; 109(4):894-903. PubMed ID: 22094883
    [Abstract] [Full Text] [Related]

  • 15. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus.
    Alam A, Zhang R, Liu P, Huang J, Wang Y, Hu Z, Madadi M, Sun D, Hu R, Ragauskas AJ, Tu Y, Peng L.
    Biotechnol Biofuels; 2019 Apr 16; 12():99. PubMed ID: 31057665
    [Abstract] [Full Text] [Related]

  • 16. Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice.
    Li Y, Zhuo J, Liu P, Chen P, Hu H, Wang Y, Zhou S, Tu Y, Peng L, Wang Y.
    Carbohydr Polym; 2018 Jul 15; 192():273-281. PubMed ID: 29691021
    [Abstract] [Full Text] [Related]

  • 17. Comparison of the effects of different pretreatments on the structure and enzymatic hydrolysis of Miscanthus.
    Dai Y, Hu B, Yang Q, Nie L, Sun D.
    Biotechnol Appl Biochem; 2022 Apr 15; 69(2):548-557. PubMed ID: 33608903
    [Abstract] [Full Text] [Related]

  • 18. Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis.
    Gao Y, Xu J, Zhang Y, Yu Q, Yuan Z, Liu Y.
    Bioresour Technol; 2013 Sep 15; 144():396-400. PubMed ID: 23891836
    [Abstract] [Full Text] [Related]

  • 19. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus.
    Li M, Si S, Hao B, Zha Y, Wan C, Hong S, Kang Y, Jia J, Zhang J, Li M, Zhao C, Tu Y, Zhou S, Peng L.
    Bioresour Technol; 2014 Oct 15; 169():447-454. PubMed ID: 25079210
    [Abstract] [Full Text] [Related]

  • 20. Redistribution of xylan in maize cell walls during dilute acid pretreatment.
    Brunecky R, Vinzant TB, Porter SE, Donohoe BS, Johnson DK, Himmel ME.
    Biotechnol Bioeng; 2009 Apr 15; 102(6):1537-43. PubMed ID: 19161247
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.