These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 23334916
1. Prediction of amino acid residues participated in substrate recognition by cytochrome P450 subfamilies with broad substrate specificity. Zharkova MS, Sobolev BN, Yu Oparina N, Veselovsky AV, Archakov AI. J Mol Recognit; 2013 Feb; 26(2):86-91. PubMed ID: 23334916 [Abstract] [Full Text] [Related]
2. Prediction of sites under adaptive evolution in cytochrome P450 sequences and their relationship to substrate recognition sites. Zawaira A, Matimba A, Masimirembwa C. Pharmacogenet Genomics; 2008 Jun; 18(6):467-76. PubMed ID: 18496126 [Abstract] [Full Text] [Related]
3. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108. de Groot MJ, Vermeulen NP, Kramer JD, van Acker FA, Donné-Op den Kelder GM. Chem Res Toxicol; 1996 Jun; 9(7):1079-91. PubMed ID: 8902262 [Abstract] [Full Text] [Related]
4. Identification of selectivity-determining residues in cytochrome P450 monooxygenases: a systematic analysis of the substrate recognition site 5. Seifert A, Pleiss J. Proteins; 2009 Mar; 74(4):1028-35. PubMed ID: 18814300 [Abstract] [Full Text] [Related]
5. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris. Bell SG, Xu F, Forward I, Bartlam M, Rao Z, Wong LL. J Mol Biol; 2008 Nov 14; 383(3):561-74. PubMed ID: 18762195 [Abstract] [Full Text] [Related]
6. Structural divergence and adaptive evolution in mammalian cytochromes P450 2C. da Fonseca RR, Antunes A, Melo A, Ramos MJ. Gene; 2007 Jan 31; 387(1-2):58-66. PubMed ID: 17045425 [Abstract] [Full Text] [Related]
7. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis. Dorner ME, McMunn RD, Bartholow TG, Calhoon BE, Conlon MR, Dulli JM, Fehling SC, Fisher CR, Hodgson SW, Keenan SW, Kruger AN, Mabin JW, Mazula DL, Monte CA, Olthafer A, Sexton AE, Soderholm BR, Strom AM, Hati S. Protein Sci; 2015 Sep 31; 24(9):1495-507. PubMed ID: 26130403 [Abstract] [Full Text] [Related]
8. Application of 3-dimensional homology modeling of cytochrome P450 2B1 for interpretation of site-directed mutagenesis results. Szklarz GD, Ornstein RL, Halpert JR. J Biomol Struct Dyn; 1994 Aug 31; 12(1):061-78. PubMed ID: 7848559 [Abstract] [Full Text] [Related]
9. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking. Li W, Tang Y, Liu H, Cheng J, Zhu W, Jiang H. Proteins; 2008 May 01; 71(2):938-49. PubMed ID: 18004755 [Abstract] [Full Text] [Related]
10. Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. Kumar S. BMC Res Notes; 2015 Jan 17; 8():9. PubMed ID: 25595103 [Abstract] [Full Text] [Related]
11. Key substrate recognition residues in the active site of a plant cytochrome P450, CYP73A1. Homology guided site-directed mutagenesis. Schoch GA, Attias R, Le Ret M, Werck-Reichhart D. Eur J Biochem; 2003 Sep 17; 270(18):3684-95. PubMed ID: 12950252 [Abstract] [Full Text] [Related]
14. Purification and characterization of a dog cytochrome P450 isozyme belonging to the CYP2D subfamily and development of its antipeptide antibody. Nakamura A, Yamamoto Y, Tasaki T, Sugimoto C, Masuda M, Kazusaka A, Fujita S. Drug Metab Dispos; 1995 Nov 17; 23(11):1268-73. PubMed ID: 8591729 [Abstract] [Full Text] [Related]
15. Toward reduction in animal sacrifice for drugs: molecular modeling of Macaca fascicularis P450 2C20 for virtual screening of Homo sapiens P450 2C8 substrates. Rua F, Di Nardo G, Sadeghi SJ, Gilardi G. Biotechnol Appl Biochem; 2012 Nov 17; 59(6):479-89. PubMed ID: 23586958 [Abstract] [Full Text] [Related]
16. Identification of retained N-formylmethionine in bacterial recombinant mammalian cytochrome P450 proteins with the N-terminal sequence MALLLAVFL...: roles of residues 3-5 in retention and membrane topology. Dong MS, Bell LC, Guo Z, Phillips DR, Blair IA, Guengerich FP. Biochemistry; 1996 Aug 06; 35(31):10031-40. PubMed ID: 8756465 [Abstract] [Full Text] [Related]
17. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450. Matsunaga I, Ueda A, Sumimoto T, Ichihara K, Ayata M, Ogura H. Arch Biochem Biophys; 2001 Oct 01; 394(1):45-53. PubMed ID: 11566026 [Abstract] [Full Text] [Related]
18. Identification of three key residues in substrate recognition site 5 of human cytochrome P450 3A4 by cassette and site-directed mutagenesis. He YA, He YQ, Szklarz GD, Halpert JR. Biochemistry; 1997 Jul 22; 36(29):8831-9. PubMed ID: 9220969 [Abstract] [Full Text] [Related]
19. Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling. Dong D, Wu B. Drug Metab Rev; 2012 Feb 22; 44(1):1-17. PubMed ID: 22242930 [Abstract] [Full Text] [Related]
20. Arginines 97 and 108 in CYP2C9 are important determinants of the catalytic function. Ridderström M, Masimirembwa C, Trump-Kallmeyer S, Ahlefelt M, Otter C, Andersson TB. Biochem Biophys Res Commun; 2000 Apr 21; 270(3):983-7. PubMed ID: 10772937 [Abstract] [Full Text] [Related] Page: [Next] [New Search]