These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


89 related items for PubMed ID: 23337618

  • 1. Involvement of the periaqueductal gray in the effect of motor cortex stimulation.
    Chiou RJ, Chang CW, Kuo CC.
    Brain Res; 2013 Mar 15; 1500():28-35. PubMed ID: 23337618
    [Abstract] [Full Text] [Related]

  • 2. Epidural motor cortex stimulation suppresses somatosensory evoked potentials in the primary somatosensory cortex of the rat.
    Chiou RJ, Lee HY, Chang CW, Lin KH, Kuo CC.
    Brain Res; 2012 Jun 29; 1463():42-50. PubMed ID: 22607820
    [Abstract] [Full Text] [Related]

  • 3. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.
    Fonoff ET, Dale CS, Pagano RL, Paccola CC, Ballester G, Teixeira MJ, Giorgi R.
    Behav Brain Res; 2009 Jan 03; 196(1):63-70. PubMed ID: 18718490
    [Abstract] [Full Text] [Related]

  • 4. Opiate anti-nociception is attenuated following lesion of large dopamine neurons of the periaqueductal grey: critical role for D1 (not D2) dopamine receptors.
    Flores JA, El Banoua F, Galán-Rodríguez B, Fernandez-Espejo E.
    Pain; 2004 Jul 03; 110(1-2):205-14. PubMed ID: 15275769
    [Abstract] [Full Text] [Related]

  • 5. Contribution of dopamine receptors to periaqueductal gray-mediated antinociception.
    Meyer PJ, Morgan MM, Kozell LB, Ingram SL.
    Psychopharmacology (Berl); 2009 Jun 03; 204(3):531-40. PubMed ID: 19225762
    [Abstract] [Full Text] [Related]

  • 6. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors.
    da Costa Gomez TM, Behbehani MM.
    Brain Res; 1995 Aug 14; 689(1):21-31. PubMed ID: 8528703
    [Abstract] [Full Text] [Related]

  • 7. Neurochemical effects of motor cortex stimulation in the periaqueductal gray during neuropathic pain.
    de Andrade EM, Martinez RCR, Pagano RL, Lopes PSS, Auada AVV, Gouveia FV, Antunes GF, Assis DV, Lebrun I, Fonoff ET.
    J Neurosurg; 2020 Jan 01; 132(1):239-251. PubMed ID: 30611141
    [Abstract] [Full Text] [Related]

  • 8. Antinociception induced by motor cortex stimulation: somatotopy of behavioral response and profile of neuronal activation.
    França NR, Toniolo EF, Franciosi AC, Alves AS, de Andrade DC, Fonoff ET, Britto LR, Dale CS.
    Behav Brain Res; 2013 Aug 01; 250():211-21. PubMed ID: 23692698
    [Abstract] [Full Text] [Related]

  • 9. [Effect of stimulating midbrain periaqueductal gray on the electrical response of somatosensory cortex to C-fiber input in cats].
    Wang BQ, Chen PX.
    Sheng Li Xue Bao; 1990 Jun 01; 42(3):241-7. PubMed ID: 2082468
    [Abstract] [Full Text] [Related]

  • 10. The effect of naloxone on trigemino-hypoglossal reflex inhibited by periaqueductal central gray stimulation in rats.
    Zubrzycka M, Janecka A.
    J Physiol Pharmacol; 2000 Sep 01; 51(3):471-81. PubMed ID: 11016866
    [Abstract] [Full Text] [Related]

  • 11. Dopaminergic modulation of receptive fields in rat sensorimotor cortex.
    Hosp JA, Hertler B, Atiemo CO, Luft AR.
    Neuroimage; 2011 Jan 01; 54(1):154-60. PubMed ID: 20643216
    [Abstract] [Full Text] [Related]

  • 12. Oxytocin in the periaqueductal gray participates in pain modulation in the rat by influencing endogenous opiate peptides.
    Yang J, Liang JY, Li P, Pan YJ, Qiu PY, Zhang J, Hao F, Wang DX.
    Peptides; 2011 Jun 01; 32(6):1255-61. PubMed ID: 21439337
    [Abstract] [Full Text] [Related]

  • 13. Tolerance induced by non-opioid analgesic microinjections into rat's periaqueductal gray and nucleus raphe.
    Tsiklauri N, Nozadze I, Gurtskaia G, Berishvili V, Abzianidze E, Tsagareli M.
    Georgian Med News; 2010 Mar 01; (180):47-55. PubMed ID: 20413817
    [Abstract] [Full Text] [Related]

  • 14. Functional and ultrastructural neuroanatomy of interactive intratectal/tectonigral mesencephalic opioid inhibitory links and nigrotectal GABAergic pathways: involvement of GABAA and mu1-opioid receptors in the modulation of panic-like reactions elicited by electrical stimulation of the dorsal midbrain.
    Ribeiro SJ, Ciscato JG, de Oliveira R, de Oliveira RC, D'Angelo-Dias R, Carvalho AD, Felippotti TT, Rebouças EC, Castellan-Baldan L, Hoffmann A, Corrêa SA, Moreira JE, Coimbra NC.
    J Chem Neuroanat; 2005 Dec 01; 30(4):184-200. PubMed ID: 16140499
    [Abstract] [Full Text] [Related]

  • 15. Antagonism of stimulation-produced analgesia by naloxone and N-methyl-D-aspartate: role of opioid and N-methyl-D-aspartate receptors.
    Mehta AK, Halder S, Khanna N, Tandon OP, Sharma KK.
    Hum Exp Toxicol; 2012 Jan 01; 31(1):51-6. PubMed ID: 21803783
    [Abstract] [Full Text] [Related]

  • 16. Involvement of cholecystokinin in the opioid tolerance induced by dipyrone (metamizol) microinjections into the periaqueductal gray matter of rats.
    Tortorici V, Nogueira L, Aponte Y, Vanegas H.
    Pain; 2004 Nov 01; 112(1-2):113-20. PubMed ID: 15494191
    [Abstract] [Full Text] [Related]

  • 17. Through V2, not V1 receptor relating to endogenous opiate peptides, arginine vasopressin in periaqueductal gray regulates antinociception in the rat.
    Yang J, Chen JM, Liu WY, Song CY, Lin BC.
    Regul Pept; 2006 Dec 10; 137(3):156-61. PubMed ID: 17011056
    [Abstract] [Full Text] [Related]

  • 18. The primary motor cortex electrical and chemical stimulation attenuates the chronic neuropathic pain by activation of the periaqueductal grey matter: The role of NMDA receptors.
    Negrini-Ferrari SE, Medeiros P, Malvestio RB, de Oliveira Silva M, Medeiros AC, Coimbra NC, Machado HR, de Freitas RL.
    Behav Brain Res; 2021 Oct 11; 415():113522. PubMed ID: 34391797
    [Abstract] [Full Text] [Related]

  • 19. Effect of morphine-induced cortical excitation on somatosensory responses evoked in the periaqueductal grey matter.
    Hernandez A, Neira S, Soto-Moyano R.
    Eur J Pharmacol; 1985 Sep 24; 115(2-3):305-8. PubMed ID: 4065211
    [Abstract] [Full Text] [Related]

  • 20. Loss of D1/D2 dopamine receptor synergisms following repeated administration of D1 or D2 receptor selective antagonists: electrophysiological and behavioral studies.
    Hu XT, White FJ.
    Synapse; 1994 May 24; 17(1):43-61. PubMed ID: 7913772
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.