These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
196 related items for PubMed ID: 2334248
21. Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium. Häggblom MM, Young LY. Arch Microbiol; 1999 Mar; 171(4):230-6. PubMed ID: 10339806 [Abstract] [Full Text] [Related]
22. Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC. Arch Microbiol; 1996 Feb; 165(2):132-40. PubMed ID: 8593100 [Abstract] [Full Text] [Related]
23. Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring. el Fantroussi S, Mahillon J, Naveau H, Agathos SN. Appl Environ Microbiol; 1997 Feb; 63(2):806-11. PubMed ID: 9023963 [Abstract] [Full Text] [Related]
24. Reduction of 3-chlorobenzoate, 3-bromobenzoate, and benzoate to corresponding alcohols by Desulfomicrobium escambiense, isolated from a 3-chlorobenzoate-dechlorinating coculture. Genthner BR, Townsend GT, Blattmann BO. Appl Environ Microbiol; 1997 Dec; 63(12):4698-703. PubMed ID: 9471962 [Abstract] [Full Text] [Related]
25. Specific deuteration of dichlorobenzoate during reductive dehalogenation by Desulfomonile tiedjei in D2O. Griffith GD, Cole JR, Quensen JF, Tiedje JM. Appl Environ Microbiol; 1992 Jan; 58(1):409-11. PubMed ID: 1539988 [Abstract] [Full Text] [Related]
26. Evidence for a chemiosmotic model of dehalorespiration in Desulfomonile tiedjei DCB-1. Louie TM, Mohn WW. J Bacteriol; 1999 Jan; 181(1):40-6. PubMed ID: 9864310 [Abstract] [Full Text] [Related]
27. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. DeWeerd KA, Concannon F, Suflita JM. Appl Environ Microbiol; 1991 Jul; 57(7):1929-34. PubMed ID: 1892383 [Abstract] [Full Text] [Related]
28. Effect of long-term exposure, biogenic substrate presence, and electron acceptor conditions on the biodegradation of multiple substituted benzoates and phenolates. Hu Z, Ferraina RA, Ericson JF, Smets BF. Water Res; 2005 Sep; 39(15):3501-10. PubMed ID: 16051311 [Abstract] [Full Text] [Related]
29. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. van den Tweel WJ, Kok JB, de Bont JA. Appl Environ Microbiol; 1987 Apr; 53(4):810-5. PubMed ID: 3579283 [Abstract] [Full Text] [Related]
30. Influence of substituents on reductive dehalogenation of 3-chlorobenzoate analogs. Dolfing J, Tiedje JM. Appl Environ Microbiol; 1991 Mar; 57(3):820-4. PubMed ID: 16348447 [Abstract] [Full Text] [Related]
31. Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. He J, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM, Löffler FE. Environ Sci Technol; 2002 Sep 15; 36(18):3945-52. PubMed ID: 12269747 [Abstract] [Full Text] [Related]
32. NADPH-dependent reductive ortho dehalogenation of 2,4-dichlorobenzoic acid in Corynebacterium sepedonicum KZ-4 and Coryneform bacterium strainNTB-1 via 2,4-dichlorobenzoyl coenzyme A. Romanov V, Hausinger RP. J Bacteriol; 1996 May 15; 178(9):2656-61. PubMed ID: 8626335 [Abstract] [Full Text] [Related]
33. 4-Chlorobenzoate uptake in Comamonas sp. strain DJ-12 is mediated by a tripartite ATP-independent periplasmic transporter. Chae JC, Zylstra GJ. J Bacteriol; 2006 Dec 15; 188(24):8407-12. PubMed ID: 17041053 [Abstract] [Full Text] [Related]
34. Physiological meaning and potential for application of reductive dechlorination by anaerobic bacteria. Holliger C, Schraa G. FEMS Microbiol Rev; 1994 Oct 15; 15(2-3):297-305. PubMed ID: 7946473 [Abstract] [Full Text] [Related]
35. Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4'-dichlorobiphenyl. Adriaens P, Kohler HP, Kohler-Staub D, Focht DD. Appl Environ Microbiol; 1989 Apr 15; 55(4):887-92. PubMed ID: 2499257 [Abstract] [Full Text] [Related]
36. Anaerobic transformations and bioremediation of chlorinated solvents. Ferguson JF, Pietari JM. Environ Pollut; 2000 Feb 15; 107(2):209-15. PubMed ID: 15092997 [Abstract] [Full Text] [Related]
37. Anaerobic degradation of halogenated benzoic acids coupled to denitrification observed in a variety of sediment and soil samples. Häggblom MM, Rivera MD, Young LY. FEMS Microbiol Lett; 1996 Nov 01; 144(2-3):213-9. PubMed ID: 9011523 [Abstract] [Full Text] [Related]
38. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei. Townsend GT, Suflita JM. Appl Environ Microbiol; 1997 Sep 01; 63(9):3594-9. PubMed ID: 9293011 [Abstract] [Full Text] [Related]
39. The use of redox potential to monitor biochemical HCBD dechlorination. Cord-Ruwisch R, James DL, Charles W. J Biotechnol; 2009 Jun 15; 142(2):151-6. PubMed ID: 19447513 [Abstract] [Full Text] [Related]
40. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Hickey WJ, Focht DD. Appl Environ Microbiol; 1990 Dec 15; 56(12):3842-50. PubMed ID: 2128010 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]