These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
482 related items for PubMed ID: 23343633
1. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coral scaffold. Liu G, Zhang Y, Liu B, Sun J, Li W, Cui L. Biomaterials; 2013 Apr; 34(11):2655-64. PubMed ID: 23343633 [Abstract] [Full Text] [Related]
2. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J, Yin S, Liu W, Cao Y. Biomaterials; 2007 Dec; 28(36):5477-86. PubMed ID: 17888508 [Abstract] [Full Text] [Related]
3. [Tissue-engineering bone with ADSCs and coral scaffold for repairing of cranial bone defect in canine]. Liu B, Cui L, Liu GP, Cao YL, Zhu JT, Cao Y. Zhonghua Zheng Xing Wai Ke Za Zhi; 2009 May; 25(3):204-8. PubMed ID: 19803204 [Abstract] [Full Text] [Related]
4. Allogeneic adipose-derived stem cells regenerate bone in a critical-sized ulna segmental defect. Wen C, Yan H, Fu S, Qian Y, Wang D, Wang C. Exp Biol Med (Maywood); 2016 Jul; 241(13):1401-9. PubMed ID: 25819682 [Abstract] [Full Text] [Related]
5. Bone regeneration in a rabbit ulna defect model: use of allogeneic adipose-derivedstem cells with low immunogenicity. Gu H, Xiong Z, Yin X, Li B, Mei N, Li G, Wang C. Cell Tissue Res; 2014 Nov; 358(2):453-64. PubMed ID: 25064029 [Abstract] [Full Text] [Related]
6. The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects. Deng Y, Zhou H, Zou D, Xie Q, Bi X, Gu P, Fan X. Biomaterials; 2013 Sep; 34(28):6717-28. PubMed ID: 23768901 [Abstract] [Full Text] [Related]
7. Enhancement of tibial regeneration in a rat model by adipose-derived stromal cells in a PLGA scaffold. Park BH, Zhou L, Jang KY, Park HS, Lim JM, Yoon SJ, Lee SY, Kim JR. Bone; 2012 Sep; 51(3):313-23. PubMed ID: 22684001 [Abstract] [Full Text] [Related]
8. Effect of endothelial differentiated adipose-derived stem cells on vascularity and osteogenesis in poly(D,L-lactide) scaffolds in vivo. Sahar DE, Walker JA, Wang HT, Stephenson SM, Shah AR, Krishnegowda NK, Wenke JC. J Craniofac Surg; 2012 May; 23(3):913-8. PubMed ID: 22627404 [Abstract] [Full Text] [Related]
9. Bone regeneration potential of allogeneic or autogeneic mesenchymal stem cells loaded onto cancellous bone granules in a rabbit radial defect model. Kang SH, Chung YG, Oh IH, Kim YS, Min KO, Chung JY. Cell Tissue Res; 2014 Jan; 355(1):81-8. PubMed ID: 24169864 [Abstract] [Full Text] [Related]
11. Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. Hou R, Chen F, Yang Y, Cheng X, Gao Z, Yang HO, Wu W, Mao T. J Biomed Mater Res A; 2007 Jan; 80(1):85-93. PubMed ID: 16960828 [Abstract] [Full Text] [Related]
13. Repair of bone defects using a new biomimetic construction fabricated by adipose-derived stem cells, collagen I, and porous beta-tricalcium phosphate scaffolds. Yang P, Huang X, Wang C, Dang X, Wang K. Exp Biol Med (Maywood); 2013 Dec; 238(12):1331-43. PubMed ID: 24157587 [Abstract] [Full Text] [Related]
14. Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model. Deng D, Wang W, Wang B, Zhang P, Zhou G, Zhang WJ, Cao Y, Liu W. Biomaterials; 2014 Oct; 35(31):8801-8809. PubMed ID: 25069604 [Abstract] [Full Text] [Related]
15. Repair of bone defects in rat radii with a composite of allogeneic adipose-derived stem cells and heterogeneous deproteinized bone. Liu J, Zhou P, Long Y, Huang C, Chen D. Stem Cell Res Ther; 2018 Mar 27; 9(1):79. PubMed ID: 29587852 [Abstract] [Full Text] [Related]
16. Bone regeneration in sheep using acropora coral, a natural resorbable scaffold, and autologous mesenchymal stem cells. Manassero M, Viateau V, Deschepper M, Oudina K, Logeart-Avramoglou D, Petite H, Bensidhoum M. Tissue Eng Part A; 2013 Jul 27; 19(13-14):1554-63. PubMed ID: 23427828 [Abstract] [Full Text] [Related]
17. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S. J Bone Joint Surg Am; 2003 Oct 27; 85(10):1927-35. PubMed ID: 14563800 [Abstract] [Full Text] [Related]
18. Osteogenic differentiation of two distinct subpopulations of human adipose-derived stem cells: an in vitro and in vivo study. Rada T, Santos TC, Marques AP, Correlo VM, Frias AM, Castro AG, Neves NM, Gomes ME, Reis RL. J Tissue Eng Regen Med; 2012 Jan 27; 6(1):1-11. PubMed ID: 21294275 [Abstract] [Full Text] [Related]
19. Role of autologous rabbit adipose-derived stem cells in the early phases of the repairing process of critical bone defects. de Girolamo L, Arrigoni E, Stanco D, Lopa S, Di Giancamillo A, Addis A, Borgonovo S, Dellavia C, Domeneghini C, Brini AT. J Orthop Res; 2011 Jan 27; 29(1):100-8. PubMed ID: 20607837 [Abstract] [Full Text] [Related]
20. The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Lin CY, Chang YH, Li KC, Lu CH, Sung LY, Yeh CL, Lin KJ, Huang SF, Yen TC, Hu YC. Biomaterials; 2013 Dec 27; 34(37):9401-12. PubMed ID: 24016854 [Abstract] [Full Text] [Related] Page: [Next] [New Search]