These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 23345729
21. A method for evaluating the transport and energy conversion properties of polymer biomembranes using the Kedem-Katchalsky-Peusner equations. Ślęzak A, Grzegorczyn SM, Pilis A, Ślęzak-Prochazka I. Polim Med; 2023; 53(1):25-36. PubMed ID: 37191173 [Abstract] [Full Text] [Related]
22. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 3. Evaluation of Hij Peusner's coefficients for polymeric membrane]. Batko KM, Slezak-Prochazka I, Slezak A. Polim Med; 2013; 43(2):111-8. PubMed ID: 24044291 [Abstract] [Full Text] [Related]
24. Evaluation of Transport Properties and Energy Conversion of Bacterial Cellulose Membrane Using Peusner Network Thermodynamics. Ślęzak-Prochazka I, Batko KM, Ślęzak A. Entropy (Basel); 2022 Dec 20; 25(1):. PubMed ID: 36673144 [Abstract] [Full Text] [Related]
27. The use of linear nonequilibrium thermodynamics in the study of renal physiology. Essig A, Caplan SR. Am J Physiol; 1979 Mar 20; 236(3):F211-9. PubMed ID: 371416 [Abstract] [Full Text] [Related]
28. Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation. Elmoazzen HY, Elliott JA, McGann LE. Biophys J; 2009 Apr 08; 96(7):2559-71. PubMed ID: 19348741 [Abstract] [Full Text] [Related]
29. Generalization of the Spiegler-Kedem-Katchalsky frictional model equations of the transmembrane transport for multicomponent non-electrolyte solutions. Slezak A, Turczyński B. Biophys Chem; 1992 Oct 08; 44(3):139-42. PubMed ID: 1420944 [Abstract] [Full Text] [Related]
33. Network thermodynamic analysis and stimulation of isotonic solute-coupled volume flow in leaky epithelia: an example of the use of network theory to provide the qualitative aspects of a complex system and its verification by stimulation. Fidelman ML, Mikulecky DC. J Theor Biol; 1988 Jan 07; 130(1):73-93. PubMed ID: 3419175 [Abstract] [Full Text] [Related]
34. Estimation of thickness of concentration boundary layers by osmotic volume flux determination. Jasik-Ślęzak JS, Olszówka KM, Slęzak A. Gen Physiol Biophys; 2011 Jun 07; 30(2):186-95. PubMed ID: 21613674 [Abstract] [Full Text] [Related]
35. A method for differentiating nonunique estimates of membrane transport properties: mature mouse oocytes exposed to glycerol. Paynter SJ, McGrath JJ, Fuller BJ, Shaw RW. Cryobiology; 1999 Nov 07; 39(3):205-14. PubMed ID: 10600254 [Abstract] [Full Text] [Related]
38. [Osmo-diffusive transport through microbial cellulose membrane: the computer model simulation in 3D graphic of the dissipation energy for various values of membrane permeability parameters]. Slezak A, Grzegorczyn S, Prochazka B. Polim Med; 2007 Nov 07; 37(3):47-57. PubMed ID: 18251204 [Abstract] [Full Text] [Related]
39. A mechanistic interpretation of root transport of water. Suchanek G. Gen Physiol Biophys; 2010 Sep 07; 29(3):295-301. PubMed ID: 20817954 [Abstract] [Full Text] [Related]
40. A physical interpretation of the phenomenological coefficients of membrane permeability. KEDEM O, KATCHALSKY A. J Gen Physiol; 1961 Sep 07; 45(1):143-79. PubMed ID: 13752127 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]