These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Screening-level risk assessment of Coxiella burnetii (Q fever) transmission via aeration of drinking water. Sales-Ortells H, Medema G. Environ Sci Technol; 2012 Apr 03; 46(7):4125-33. PubMed ID: 22309101 [Abstract] [Full Text] [Related]
6. Prevalence of Coxiella burnetii in ticks after a large outbreak of Q fever. Sprong H, Tijsse-Klasen E, Langelaar M, De Bruin A, Fonville M, Gassner F, Takken W, Van Wieren S, Nijhof A, Jongejan F, Maassen CB, Scholte EJ, Hovius JW, Emil Hovius K, Spitalská E, Van Duynhoven YT. Zoonoses Public Health; 2012 Feb 03; 59(1):69-75. PubMed ID: 21824373 [Abstract] [Full Text] [Related]
7. Coxiella burnetii (Q fever) in Rattus norvegicus and Rattus rattus at livestock farms and urban locations in the Netherlands; could Rattus spp. represent reservoirs for (re)introduction? Reusken C, van der Plaats R, Opsteegh M, de Bruin A, Swart A. Prev Vet Med; 2011 Aug 01; 101(1-2):124-30. PubMed ID: 21640416 [Abstract] [Full Text] [Related]
8. Detection of Coxiella burnetii in complex matrices by using multiplex quantitative PCR during a major Q fever outbreak in The Netherlands. de Bruin A, de Groot A, de Heer L, Bok J, Wielinga PR, Hamans M, van Rotterdam BJ, Janse I. Appl Environ Microbiol; 2011 Sep 01; 77(18):6516-23. PubMed ID: 21784920 [Abstract] [Full Text] [Related]
9. Prevalence of C. burnetii DNA in sheep and goats milk in the northwest of Iran. Khademi P, Ownagh A, Ataei B, Kazemnia A, Enferadi A, Khalili M, Mardani K. Int J Food Microbiol; 2020 Oct 16; 331():108716. PubMed ID: 32521375 [Abstract] [Full Text] [Related]
10. Analysis of environmental dust in goat and sheep farms to assess Coxiella burnetii infection in a Q fever endemic area: Geographical distribution, relationship with human cases and genotypes. Zendoia II, Barandika JF, Hurtado A, López CM, Alonso E, Beraza X, Ocabo B, García-Pérez AL. Zoonoses Public Health; 2021 Sep 16; 68(6):666-676. PubMed ID: 34240552 [Abstract] [Full Text] [Related]
11. Detection of Coxiella burnetii DNA on small-ruminant farms during a Q fever outbreak in the Netherlands. de Bruin A, van der Plaats RQ, de Heer L, Paauwe R, Schimmer B, Vellema P, van Rotterdam BJ, van Duynhoven YT. Appl Environ Microbiol; 2012 Mar 16; 78(6):1652-7. PubMed ID: 22247143 [Abstract] [Full Text] [Related]
12. Remarkable spatial variation in the seroprevalence of Coxiella burnetii after a large Q fever epidemic. Pijnacker R, Reimerink J, Smit LAM, van Gageldonk-Lafeber AB, Zock JP, Borlée F, Yzermans J, Heederik DJJ, Maassen CBM, van der Hoek W. BMC Infect Dis; 2017 Nov 21; 17(1):725. PubMed ID: 29157226 [Abstract] [Full Text] [Related]
14. Detection of Coxiella burnetii DNA in the environment during and after a large Q fever epidemic in the Netherlands. de Bruin A, Janse I, Koning M, de Heer L, van der Plaats RQ, van Leuken JP, van Rotterdam BJ. J Appl Microbiol; 2013 May 21; 114(5):1395-404. PubMed ID: 23398323 [Abstract] [Full Text] [Related]
15. Smooth incidence maps give valuable insight into Q fever outbreaks in The Netherlands. van der Hoek W, van de Kassteele J, Bom B, de Bruin A, Dijkstra F, Schimmer B, Vellema P, ter Schegget R, Schneeberger PM. Geospat Health; 2012 Nov 21; 7(1):127-34. PubMed ID: 23242690 [Abstract] [Full Text] [Related]