These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The mirror neuron system under hypnosis - brain substrates of voluntary and involuntary motor activation in hypnotic paralysis. Burgmer M, Kugel H, Pfleiderer B, Ewert A, Lenzen T, Pioch R, Pyka M, Sommer J, Arolt V, Heuft G, Konrad C. Cortex; 2013 Feb; 49(2):437-45. PubMed ID: 22795265 [Abstract] [Full Text] [Related]
4. The brain under self-control: modulation of inhibitory and monitoring cortical networks during hypnotic paralysis. Cojan Y, Waber L, Schwartz S, Rossier L, Forster A, Vuilleumier P. Neuron; 2009 Jun 25; 62(6):862-75. PubMed ID: 19555654 [Abstract] [Full Text] [Related]
5. Time-course of motor inhibition during hypnotic paralysis: EEG topographical and source analysis. Cojan Y, Archimi A, Cheseaux N, Waber L, Vuilleumier P. Cortex; 2013 Feb 25; 49(2):423-36. PubMed ID: 23211547 [Abstract] [Full Text] [Related]
8. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. Rektor I, Sochůrková D, Bocková M. Prog Brain Res; 2006 Feb 25; 159():311-30. PubMed ID: 17071240 [Abstract] [Full Text] [Related]
9. Increased self-monitoring during imagined movements in conversion paralysis. de Lange FP, Roelofs K, Toni I. Neuropsychologia; 2007 May 15; 45(9):2051-8. PubMed ID: 17367826 [Abstract] [Full Text] [Related]
10. Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. Naito E, Nakashima T, Kito T, Aramaki Y, Okada T, Sadato N. Eur J Neurosci; 2007 Jun 15; 25(11):3476-87. PubMed ID: 17553017 [Abstract] [Full Text] [Related]
12. The neural correlates of movement intentions: A pilot study comparing hypnotic and simulated paralysis. Ludwig VU, Seitz J, Schönfeldt-Lecuona C, Höse A, Abler B, Hole G, Goebel R, Walter H. Conscious Cogn; 2015 Sep 15; 35():158-70. PubMed ID: 26036837 [Abstract] [Full Text] [Related]
13. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Neuroimage; 2004 Apr 15; 21(4):1416-27. PubMed ID: 15050567 [Abstract] [Full Text] [Related]
14. Sex and performance level effects on brain activation during a verbal fluency task: a functional magnetic resonance imaging study. Gauthier CT, Duyme M, Zanca M, Capron C. Cortex; 2009 Feb 15; 45(2):164-76. PubMed ID: 19150518 [Abstract] [Full Text] [Related]
15. Brain areas involved in interlimb coordination: a distributed network. Debaere F, Swinnen SP, Béatse E, Sunaert S, Van Hecke P, Duysens J. Neuroimage; 2001 Nov 15; 14(5):947-58. PubMed ID: 11697927 [Abstract] [Full Text] [Related]
17. Motor imagery during hypnotic arm paralysis in high and low hypnotizable subjects. Roelofs K, Hoogduin KA, Keijsers GP. Int J Clin Exp Hypn; 2002 Jan 15; 50(1):51-66. PubMed ID: 11783441 [Abstract] [Full Text] [Related]
18. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. Martin RE, MacIntosh BJ, Smith RC, Barr AM, Stevens TK, Gati JS, Menon RS. J Neurophysiol; 2004 Oct 15; 92(4):2428-43. PubMed ID: 15163677 [Abstract] [Full Text] [Related]
19. Involvement of the primary motor cortex in controlling movements executed with the ipsilateral hand differs between left- and right-handers. van den Berg FE, Swinnen SP, Wenderoth N. J Cogn Neurosci; 2011 Nov 15; 23(11):3456-69. PubMed ID: 21452954 [Abstract] [Full Text] [Related]
20. Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention. Sacco K, Cauda F, D'Agata F, Mate D, Duca S, Geminiani G. Brain Res; 2009 Nov 10; 1297():124-34. PubMed ID: 19703428 [Abstract] [Full Text] [Related] Page: [Next] [New Search]