These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. Simard JR, Zunszain PA, Hamilton JA, Curry S. J Mol Biol; 2006 Aug 11; 361(2):336-51. PubMed ID: 16844140 [Abstract] [Full Text] [Related]
5. Magnetic susceptibility to measure total protein concentration from NMR metabolite spectra: Demonstration on blood plasma. Jupin M, Michiels PJ, Girard FC, Wijmenga SS. Magn Reson Med; 2015 Feb 11; 73(2):459-68. PubMed ID: 24639074 [Abstract] [Full Text] [Related]
6. Evaluation of the binding of oxovanadium(IV) to human serum albumin. Correia I, Jakusch T, Cobbinna E, Mehtab S, Tomaz I, Nagy NV, Rockenbauer A, Pessoa JC, Kiss T. Dalton Trans; 2012 Jun 07; 41(21):6477-87. PubMed ID: 22476413 [Abstract] [Full Text] [Related]
7. Comparative studies of unfolding and binding of ligands to human serum albumin in the presence of fatty acid: spectroscopic approach. Varshney A, Ahmad B, Khan RH. Int J Biol Macromol; 2008 Jun 01; 42(5):483-90. PubMed ID: 18452986 [Abstract] [Full Text] [Related]
8. Human serum albumin binding to silica nanoparticles--effect of protein fatty acid ligand. Ang JC, Henderson MJ, Campbell RA, Lin JM, Yaron PN, Nelson A, Faunce T, White JW. Phys Chem Chem Phys; 2014 Jun 07; 16(21):10157-68. PubMed ID: 24595605 [Abstract] [Full Text] [Related]
9. Stereospecific recognition of a spirosuccinimide type aldose reductase inhibitor (AS-3201) by plasma proteins: a significant role of specific binding by serum albumin in the improved potency and stability. Kurono M, Fujii A, Murata M, Fujitani B, Negoro T. Biochem Pharmacol; 2006 Jan 12; 71(3):338-53. PubMed ID: 16324683 [Abstract] [Full Text] [Related]
12. Binding of 3-carbethoxipsoralen to human serum albumin and human serum: influence of free fatty acids. Font G, Mañes J, Martre H, Prognon P, Mahuzier G. Rev Esp Fisiol; 1987 Sep 12; 43(3):317-21. PubMed ID: 3423390 [Abstract] [Full Text] [Related]
13. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. Bhattacharya AA, Grüne T, Curry S. J Mol Biol; 2000 Nov 10; 303(5):721-32. PubMed ID: 11061971 [Abstract] [Full Text] [Related]
14. Modulation of heme and myristate binding to human serum albumin by anti-HIV drugs. An optical and NMR spectroscopic study. Fanali G, Bocedi A, Ascenzi P, Fasano M. FEBS J; 2007 Sep 10; 274(17):4491-502. PubMed ID: 17725715 [Abstract] [Full Text] [Related]
15. Correspondence of fatty acid and drug binding sites on human serum albumin: a two-dimensional nuclear magnetic resonance study. Krenzel ES, Chen Z, Hamilton JA. Biochemistry; 2013 Mar 05; 52(9):1559-67. PubMed ID: 23360066 [Abstract] [Full Text] [Related]
19. Design, synthesis and spectroscopic studies of resveratrol aliphatic acid ligands of human serum albumin. Jiang YL. Bioorg Med Chem; 2008 Jun 15; 16(12):6406-14. PubMed ID: 18499462 [Abstract] [Full Text] [Related]
20. Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin. Yamasaki K, Hyodo S, Taguchi K, Nishi K, Yamaotsu N, Hirono S, Chuang VTG, Seo H, Maruyama T, Otagiri M. PLoS One; 2017 Jun 15; 12(6):e0180404. PubMed ID: 28662200 [Abstract] [Full Text] [Related] Page: [Next] [New Search]