These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
489 related items for PubMed ID: 23358675
1. Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies. Fekete S, Veuthey JL, Eeltink S, Guillarme D. Anal Bioanal Chem; 2013 Apr; 405(10):3137-51. PubMed ID: 23358675 [Abstract] [Full Text] [Related]
2. Evaluation of a new wide pore core-shell material (Aeris WIDEPORE) and comparison with other existing stationary phases for the analysis of intact proteins. Fekete S, Berky R, Fekete J, Veuthey JL, Guillarme D. J Chromatogr A; 2012 May 04; 1236():177-88. PubMed ID: 22443893 [Abstract] [Full Text] [Related]
3. Impact of mobile phase temperature on recovery and stability of monoclonal antibodies using recent reversed-phase stationary phases. Fekete S, Rudaz S, Veuthey JL, Guillarme D. J Sep Sci; 2012 Nov 04; 35(22):3113-23. PubMed ID: 22715092 [Abstract] [Full Text] [Related]
4. Utility of a high coverage phenyl-bonding and wide-pore superficially porous particle for the analysis of monoclonal antibodies and related products. Bobály B, Lauber M, Beck A, Guillarme D, Fekete S. J Chromatogr A; 2018 May 11; 1549():63-76. PubMed ID: 29602545 [Abstract] [Full Text] [Related]
5. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity. Nischang I. J Chromatogr A; 2012 May 04; 1236():152-63. PubMed ID: 22443891 [Abstract] [Full Text] [Related]
6. Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 μm porous and 2.7 μm fused-core silica particles. Vaast A, Broeckhoven K, Dolman S, Desmet G, Eeltink S. J Chromatogr A; 2012 Mar 09; 1228():270-5. PubMed ID: 21855077 [Abstract] [Full Text] [Related]
7. Evaluation of a new wide-pore superficially porous material with carbon core and nanodiamond-polymer shell for the separation of proteins. Fekete S, Jensen DS, Zukowski J, Guillarme D. J Chromatogr A; 2015 Oct 02; 1414():51-9. PubMed ID: 26456222 [Abstract] [Full Text] [Related]
8. Evaluation of recent very efficient wide-pore stationary phases for the reversed-phase separation of proteins. Fekete S, Berky R, Fekete J, Veuthey JL, Guillarme D. J Chromatogr A; 2012 Aug 24; 1252():90-103. PubMed ID: 22784695 [Abstract] [Full Text] [Related]
9. Kinetic performance comparison of superficially porous, fully porous and monolithic reversed-phase columns by gradient kinetic plots for the separation of protein biopharmaceuticals. Jaag S, Wen C, Peters B, Lämmerhofer M. J Chromatogr A; 2022 Aug 02; 1676():463251. PubMed ID: 35752149 [Abstract] [Full Text] [Related]
10. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance. Schmitt K, Woiwode U, Kohout M, Zhang T, Lindner W, Lämmerhofer M. J Chromatogr A; 2018 Sep 28; 1569():149-159. PubMed ID: 30041874 [Abstract] [Full Text] [Related]
11. High resolution reversed phase analysis of recombinant monoclonal antibodies by ultra-high pressure liquid chromatography column coupling. Fekete S, Dong MW, Zhang T, Guillarme D. J Pharm Biomed Anal; 2013 Sep 28; 83():273-8. PubMed ID: 23770782 [Abstract] [Full Text] [Related]
13. Band broadening in fast gradient high-performance liquid chromatography: application to the second generation of 4.6 mm I.D. silica monolithic columns. Gritti F, Guiochon G. J Chromatogr A; 2012 May 18; 1238():77-90. PubMed ID: 22503619 [Abstract] [Full Text] [Related]