These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


273 related items for PubMed ID: 23359556

  • 1. Osteoblastic cellular responses on ionically crosslinked chitosan-tripolyphosphate fibrous 3-D mesh scaffolds.
    Pati F, Kalita H, Adhikari B, Dhara S.
    J Biomed Mater Res A; 2013 Sep; 101(9):2526-37. PubMed ID: 23359556
    [Abstract] [Full Text] [Related]

  • 2. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration.
    Uswatta SP, Okeke IU, Jayasuriya AC.
    Mater Sci Eng C Mater Biol Appl; 2016 Dec 01; 69():505-12. PubMed ID: 27612741
    [Abstract] [Full Text] [Related]

  • 3. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT.
    J Biomed Mater Res A; 2010 Jun 01; 93(3):1193-208. PubMed ID: 19777575
    [Abstract] [Full Text] [Related]

  • 4. Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano β-tricalcium phosphate porous scaffolds crosslinked with genipin.
    Siddiqui N, Pramanik K, Jabbari E.
    Mater Sci Eng C Mater Biol Appl; 2015 Sep 01; 54():76-83. PubMed ID: 26046270
    [Abstract] [Full Text] [Related]

  • 5. Collagen intermingled chitosan-tripolyphosphate nano/micro fibrous scaffolds for tissue-engineering application.
    Pati F, Adhikari B, Dhara S.
    J Biomater Sci Polym Ed; 2012 Sep 01; 23(15):1923-38. PubMed ID: 21967759
    [Abstract] [Full Text] [Related]

  • 6. Osteoblast biocompatibility of novel chitosan crosslinker, hexamethylene-1,6-diaminocarboxysulfonate.
    Beringer LT, Kiechel MA, Komiya Y, Donius AE, Habas R, Wegst UG, Schauer CL.
    J Biomed Mater Res A; 2015 Sep 01; 103(9):3026-33. PubMed ID: 25689675
    [Abstract] [Full Text] [Related]

  • 7. Development of porous chitosan/tripolyphosphate scaffolds with tunable uncross-linking primary amine content for bone tissue engineering.
    Xu Y, Han J, Chai Y, Yuan S, Lin H, Zhang X.
    Mater Sci Eng C Mater Biol Appl; 2018 Apr 01; 85():182-190. PubMed ID: 29407147
    [Abstract] [Full Text] [Related]

  • 8. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J, Yu X.
    Acta Biomater; 2010 Aug 01; 6(8):3004-12. PubMed ID: 20144749
    [Abstract] [Full Text] [Related]

  • 9. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization.
    Liu IH, Chang SH, Lin HY.
    Biomed Mater; 2015 May 13; 10(3):035004. PubMed ID: 25970802
    [Abstract] [Full Text] [Related]

  • 10. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells.
    Heinemann C, Heinemann S, Lode A, Bernhardt A, Worch H, Hanke T.
    Biomacromolecules; 2009 May 11; 10(5):1305-10. PubMed ID: 19344120
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X.
    J Biomed Mater Res A; 2010 May 11; 93(2):753-62. PubMed ID: 19642211
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. [Proliferation and differentiation of MC 3T3-E1 cells cultured on nanohydroxyapatite/chitosan composite scaffolds].
    Kong LJ, Ao Q, Xi J, Zhang L, Gong YD, Zhao NM, Zhang XF.
    Sheng Wu Gong Cheng Xue Bao; 2007 Mar 11; 23(2):262-7. PubMed ID: 17460899
    [Abstract] [Full Text] [Related]

  • 15. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.
    Jiang T, Abdel-Fattah WI, Laurencin CT.
    Biomaterials; 2006 Oct 11; 27(28):4894-903. PubMed ID: 16762408
    [Abstract] [Full Text] [Related]

  • 16. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Krishnamra N, Tang IM.
    Mater Sci Eng C Mater Biol Appl; 2014 May 01; 38():63-72. PubMed ID: 24656353
    [Abstract] [Full Text] [Related]

  • 17. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL.
    Biomaterials; 2006 Dec 01; 27(36):6123-37. PubMed ID: 16945410
    [Abstract] [Full Text] [Related]

  • 18. Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds.
    Brown RF, Day DE, Day TE, Jung S, Rahaman MN, Fu Q.
    Acta Biomater; 2008 Mar 01; 4(2):387-96. PubMed ID: 17768097
    [Abstract] [Full Text] [Related]

  • 19. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM, Viano AM, Yuan Y, Yang Y, Guda T, Appleford MR, Ong JL, Haggard WO, Bumgardner JD.
    J Biomed Mater Res A; 2009 Feb 01; 88(2):491-502. PubMed ID: 18306307
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.