These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


379 related items for PubMed ID: 23360098

  • 1. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.
    Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE.
    Environ Sci Technol; 2013 Feb 19; 47(4):2085-91. PubMed ID: 23360098
    [Abstract] [Full Text] [Related]

  • 2. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells.
    Ter Heijne A, Strik DP, Hamelers HV, Buisman CJ.
    Environ Sci Technol; 2010 Sep 15; 44(18):7151-6. PubMed ID: 20715764
    [Abstract] [Full Text] [Related]

  • 3. Air-cathode structure optimization in separator-coupled microbial fuel cells.
    Zhang X, Sun H, Liang P, Huang X, Chen X, Logan BE.
    Biosens Bioelectron; 2011 Dec 15; 30(1):267-71. PubMed ID: 21996324
    [Abstract] [Full Text] [Related]

  • 4. Mitigation of the effect of catholyte contamination in microbial fuel cells using a wicking air cathode.
    Sund CJ, Wong MS, Sumner JJ.
    Biosens Bioelectron; 2009 Jun 15; 24(10):3144-7. PubMed ID: 19359159
    [Abstract] [Full Text] [Related]

  • 5. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS, Nerenberg R.
    Appl Microbiol Biotechnol; 2010 May 15; 86(5):1399-408. PubMed ID: 20098985
    [Abstract] [Full Text] [Related]

  • 6. Use of pyrolyzed iron ethylenediaminetetraacetic acid modified activated carbon as air-cathode catalyst in microbial fuel cells.
    Xia X, Zhang F, Zhang X, Liang P, Huang X, Logan BE.
    ACS Appl Mater Interfaces; 2013 Aug 28; 5(16):7862-6. PubMed ID: 23902951
    [Abstract] [Full Text] [Related]

  • 7. Power generation by packed-bed air-cathode microbial fuel cells.
    Zhang X, Shi J, Liang P, Wei J, Huang X, Zhang C, Logan BE.
    Bioresour Technol; 2013 Aug 28; 142():109-14. PubMed ID: 23732924
    [Abstract] [Full Text] [Related]

  • 8. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (nafion and PTFE) in single chamber microbial fuel cells.
    Cheng S, Liu H, Logan BE.
    Environ Sci Technol; 2006 Jan 01; 40(1):364-9. PubMed ID: 16433373
    [Abstract] [Full Text] [Related]

  • 9. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H, Logan BE.
    Environ Sci Technol; 2004 Jul 15; 38(14):4040-6. PubMed ID: 15298217
    [Abstract] [Full Text] [Related]

  • 10. Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity.
    An J, Jeon H, Lee J, Chang IS.
    Environ Sci Technol; 2011 Jun 15; 45(12):5441-6. PubMed ID: 21585217
    [Abstract] [Full Text] [Related]

  • 11. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.
    Cheng S, Kiely P, Logan BE.
    Bioresour Technol; 2011 Jan 15; 102(1):367-71. PubMed ID: 20580223
    [Abstract] [Full Text] [Related]

  • 12. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells.
    Zhang F, Pant D, Logan BE.
    Biosens Bioelectron; 2011 Dec 15; 30(1):49-55. PubMed ID: 21937216
    [Abstract] [Full Text] [Related]

  • 13. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells.
    Huang L, Regan JM, Quan X.
    Bioresour Technol; 2011 Jan 15; 102(1):316-23. PubMed ID: 20634062
    [Abstract] [Full Text] [Related]

  • 14. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.
    Liu W, Cheng S, Sun D, Huang H, Chen J, Cen K.
    Biosens Bioelectron; 2015 Oct 15; 72():44-50. PubMed ID: 25957076
    [Abstract] [Full Text] [Related]

  • 15. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.
    Cheng S, Liu W, Guo J, Sun D, Pan B, Ye Y, Ding W, Huang H, Li F.
    Biosens Bioelectron; 2014 Jun 15; 56():264-70. PubMed ID: 24514078
    [Abstract] [Full Text] [Related]

  • 16. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode.
    Yan H, Saito T, Regan JM.
    Water Res; 2012 May 01; 46(7):2215-24. PubMed ID: 22386083
    [Abstract] [Full Text] [Related]

  • 17. Electricity generation from cysteine in a microbial fuel cell.
    Logan BE, Murano C, Scott K, Gray ND, Head IM.
    Water Res; 2005 Mar 01; 39(5):942-52. PubMed ID: 15743641
    [Abstract] [Full Text] [Related]

  • 18. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells.
    Zhang L, Liu C, Zhuang L, Li W, Zhou S, Zhang J.
    Biosens Bioelectron; 2009 May 15; 24(9):2825-9. PubMed ID: 19297145
    [Abstract] [Full Text] [Related]

  • 19. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation.
    Kardi SN, Ibrahim N, Rashid NAA, Darzi GN.
    Environ Sci Pollut Res Int; 2019 Jul 15; 26(21):21201-21215. PubMed ID: 31115820
    [Abstract] [Full Text] [Related]

  • 20. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes.
    Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR.
    Biosens Bioelectron; 2007 Mar 15; 22(8):1672-9. PubMed ID: 16939710
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.