These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 233657
21. Corticosteroids and the active ion transport of the isolated human lens. Kana JS, Wiederholt M. Ann Ophthalmol; 1984 Nov; 16(11):1034-9. PubMed ID: 6097150 [Abstract] [Full Text] [Related]
22. Cellular communication through membrane junctions. Special consideration of wound healing and cancer. Loewenstein WR. Arch Intern Med; 1972 Feb; 129(2):299-305. PubMed ID: 4333645 [No Abstract] [Full Text] [Related]
23. Modeled channel distributions explain extracellular recordings from cultured neurons sealed to microelectrodes. Buitenweg JR, Rutten WL, Marani E. IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1580-90. PubMed ID: 12549740 [Abstract] [Full Text] [Related]
24. The movement of procion dye in the crystalline lens. Rae JL. Invest Ophthalmol; 1974 Feb; 13(2):147-50. PubMed ID: 4544153 [No Abstract] [Full Text] [Related]
25. Effects of oxidants on lens transport. Walsh S, Patterson JW. Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1648-58. PubMed ID: 1707864 [Abstract] [Full Text] [Related]
26. A histologic study of lens regeneration in aphakic rabbits. Gwon AE, Gruber LJ, Mundwiler KE. Invest Ophthalmol Vis Sci; 1990 Mar 01; 31(3):540-7. PubMed ID: 2318593 [Abstract] [Full Text] [Related]
27. Lens gap junctional coupling is modulated by connexin identity and the locus of gene expression. Martinez-Wittinghan FJ, Sellitto C, White TW, Mathias RT, Paul D, Goodenough DA. Invest Ophthalmol Vis Sci; 2004 Oct 01; 45(10):3629-37. PubMed ID: 15452070 [Abstract] [Full Text] [Related]
28. Mutual contact of murine erythroleukemia cells activates depolarizing cation channels, whereas contact with extracellular substrata activates hyperpolarizing Ca2+-dependent K+ channels. Arcangeli A, Riccarda Del Bene M, Poli R, Ricupero L, Olivotto M. J Cell Physiol; 1989 Apr 01; 139(1):1-8. PubMed ID: 2468677 [Abstract] [Full Text] [Related]
29. Measurement, modeling, and analysis of the linear electrical properties of cells. Eisenberg RS, Mathias RT, Rae JS. Ann N Y Acad Sci; 1977 Dec 30; 303():342-54. PubMed ID: 290301 [No Abstract] [Full Text] [Related]
30. Electrophysiology of the pancreas. Petersen OH, Findlay I. Physiol Rev; 1987 Jul 30; 67(3):1054-116. PubMed ID: 2440063 [No Abstract] [Full Text] [Related]
36. Dye transfer between cells of the embryonic chick lens becomes less sensitive to CO2 treatment with development. Schuetze SM, Goodenough DA. J Cell Biol; 1982 Mar 30; 92(3):694-705. PubMed ID: 6806303 [Abstract] [Full Text] [Related]
37. A portrait of plasma membrane specializations in eye lens epithelium and fibers. Benedetti EL, Dunia I, Bentzel CJ, Vermorken AJ, Kibbelaar M, Bloemendal H. Biochim Biophys Acta; 1976 Dec 14; 457(3-4):353-84. PubMed ID: 793636 [No Abstract] [Full Text] [Related]
38. Molecular and morphological aspects of cell-cell communication. Introductory remarks to the symposium. Loewenstein WR. In Vitro; 1980 Dec 14; 16(12):1007-9. PubMed ID: 6260622 [No Abstract] [Full Text] [Related]
39. Potential profiles in the crystalline lens of the frog. Rae JL. Exp Eye Res; 1974 Sep 14; 19(3):227-34. PubMed ID: 4547546 [No Abstract] [Full Text] [Related]
40. [Experimental studies on the mechanism of cataract formation. 1. An electrophysiological and morphological study of normal lens (author's transl)]. Taura T. Nippon Ganka Gakkai Zasshi; 1979 Sep 10; 83(9):1788-801. PubMed ID: 316649 [No Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]