These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 23373718

  • 1. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED, Johnston SG, Kraal P, Bush RT, Claff S.
    Environ Sci Technol; 2013 Mar 05; 47(5):2221-9. PubMed ID: 23373718
    [Abstract] [Full Text] [Related]

  • 2. Phosphate loading alters schwertmannite transformation rates and pathways during microbial reduction.
    Schoepfer VA, Burton ED, Johnston SG, Kraal P.
    Sci Total Environ; 2019 Mar 20; 657():770-780. PubMed ID: 30677942
    [Abstract] [Full Text] [Related]

  • 3. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.
    Burton ED, Johnston SG, Watling K, Bush RT, Keene AF, Sullivan LA.
    Environ Sci Technol; 2010 Mar 15; 44(6):2016-21. PubMed ID: 20148551
    [Abstract] [Full Text] [Related]

  • 4. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction.
    Burton ED, Johnston SG, Kocar BD.
    Environ Sci Technol; 2014 Dec 02; 48(23):13660-7. PubMed ID: 25346449
    [Abstract] [Full Text] [Related]

  • 5. Effect of schwertmannite and jarosite on the formation of hypoxic blackwater during inundation of grass material.
    Vithana CL, Sullivan LA, Shepherd T.
    Water Res; 2017 Nov 01; 124():1-10. PubMed ID: 28734957
    [Abstract] [Full Text] [Related]

  • 6. Sorption of arsenic(V) and arsenic(III) to schwertmannite.
    Burton ED, Bush RT, Johnston SG, Watling KM, Hocking RK, Sullivan LA, Parker GK.
    Environ Sci Technol; 2009 Dec 15; 43(24):9202-7. PubMed ID: 19921855
    [Abstract] [Full Text] [Related]

  • 7. Solid-solution reactions in As(V) sorption by schwertmannite.
    Fukushi K, Sato T, Yanase N.
    Environ Sci Technol; 2003 Aug 15; 37(16):3581-6. PubMed ID: 12953869
    [Abstract] [Full Text] [Related]

  • 8. Antimony and arsenic partitioning during Fe2+-induced transformation of jarosite under acidic conditions.
    Karimian N, Johnston SG, Burton ED.
    Chemosphere; 2018 Mar 15; 195():515-523. PubMed ID: 29277031
    [Abstract] [Full Text] [Related]

  • 9. Phosphate-Imposed Constraints on Schwertmannite Stability under Reducing Conditions.
    Schoepfer VA, Burton ED, Johnston SG, Kraal P.
    Environ Sci Technol; 2017 Sep 05; 51(17):9739-9746. PubMed ID: 28766328
    [Abstract] [Full Text] [Related]

  • 10. Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite.
    Wang Y, Gao M, Huang W, Wang T, Liu Y.
    Chemosphere; 2020 Jul 05; 251():126427. PubMed ID: 32171940
    [Abstract] [Full Text] [Related]

  • 11. Sulfate availability drives the reductive transformation of schwertmannite by co-cultured iron- and sulfate-reducing bacteria.
    Ke C, Deng Y, Zhang S, Ren M, Liu B, He J, Wu R, Dang Z, Guo C.
    Sci Total Environ; 2024 Jan 01; 906():167690. PubMed ID: 37820819
    [Abstract] [Full Text] [Related]

  • 12. Arsenic Mobilization Is Enhanced by Thermal Transformation of Schwertmannite.
    Johnston SG, Burton ED, Moon EM.
    Environ Sci Technol; 2016 Aug 02; 50(15):8010-9. PubMed ID: 27403840
    [Abstract] [Full Text] [Related]

  • 13. Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridiei.
    Zhang Y, Gao K, Dang Z, Huang W, Reinfelder JR, Ren Y.
    Sci Total Environ; 2021 Apr 10; 764():144279. PubMed ID: 33401041
    [Abstract] [Full Text] [Related]

  • 14. Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells.
    Xiong H, Liao Y, Zhou L.
    Environ Sci Technol; 2008 Dec 01; 42(23):8681-6. PubMed ID: 19192781
    [Abstract] [Full Text] [Related]

  • 15. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X, Ellis A, Wang Y, Xie Z, Duan M, Su C.
    Sci Total Environ; 2009 Jun 01; 407(12):3823-35. PubMed ID: 19344934
    [Abstract] [Full Text] [Related]

  • 16. Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens.
    Cutting RS, Coker VS, Telling ND, Kimber RL, van der Laan G, Pattrick RA, Vaughan DJ, Arenholz E, Lloyd JR.
    Environ Sci Technol; 2012 Nov 20; 46(22):12591-9. PubMed ID: 23043215
    [Abstract] [Full Text] [Related]

  • 17. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.
    Zeng Y, Wang H, Guo C, Wan J, Fan C, Reinfelder JR, Lu G, Wu F, Huang W, Dang Z.
    Environ Pollut; 2018 Nov 20; 242(Pt A):738-748. PubMed ID: 30031307
    [Abstract] [Full Text] [Related]

  • 18. Sulfate-accelerated photochemical oxidation of arsenopyrite in acidic systems under oxic conditions: Formation and function of schwertmannite.
    Hong J, Liu L, Zhang Z, Xia X, Yang L, Ning Z, Liu C, Qiu G.
    J Hazard Mater; 2022 Jul 05; 433():128716. PubMed ID: 35358816
    [Abstract] [Full Text] [Related]

  • 19. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater.
    Liao Y, Liang J, Zhou L.
    Chemosphere; 2011 Apr 05; 83(3):295-301. PubMed ID: 21239041
    [Abstract] [Full Text] [Related]

  • 20. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine.
    Bao Y, Guo C, Lu G, Yi X, Wang H, Dang Z.
    Sci Total Environ; 2018 Mar 05; 616-617():647-657. PubMed ID: 29103647
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.