These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


390 related items for PubMed ID: 23376240

  • 1. Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation.
    Kim SR, Lee KS, Kong II, Lesmana A, Lee WH, Seo JH, Kweon DH, Jin YS.
    J Biotechnol; 2013 Mar 10; 164(1):105-11. PubMed ID: 23376240
    [Abstract] [Full Text] [Related]

  • 2. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR, Kwee NR, Kim H, Jin YS.
    FEMS Yeast Res; 2013 May 10; 13(3):312-21. PubMed ID: 23398717
    [Abstract] [Full Text] [Related]

  • 3. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR, Ha SJ, Kong II, Jin YS.
    Metab Eng; 2012 Jul 10; 14(4):336-43. PubMed ID: 22521925
    [Abstract] [Full Text] [Related]

  • 4. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis.
    Jo JH, Park YC, Jin YS, Seo JH.
    Bioresour Technol; 2017 Oct 10; 241():88-94. PubMed ID: 28550778
    [Abstract] [Full Text] [Related]

  • 5. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.
    Tsai CS, Kong II, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS.
    Biotechnol Bioeng; 2015 Nov 10; 112(11):2406-11. PubMed ID: 25943337
    [Abstract] [Full Text] [Related]

  • 6. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR, Lee KS, Choi JH, Ha SJ, Kweon DH, Seo JH, Jin YS.
    J Biotechnol; 2010 Nov 10; 150(3):404-7. PubMed ID: 20933550
    [Abstract] [Full Text] [Related]

  • 7. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains.
    Kato H, Suyama H, Yamada R, Hasunuma T, Kondo A.
    Appl Microbiol Biotechnol; 2012 Jun 10; 94(6):1585-92. PubMed ID: 22406859
    [Abstract] [Full Text] [Related]

  • 8. Different transcriptional responses of haploid and diploid S. cerevisiae strains to changes in cofactor preference of XR.
    Xie CY, Yang BX, Song QR, Xia ZY, Gou M, Tang YQ.
    Microb Cell Fact; 2020 Nov 13; 19(1):211. PubMed ID: 33187525
    [Abstract] [Full Text] [Related]

  • 9. Near infrared spectroscopy as high-throughput technology for screening of xylose-fermenting recombinant Saccharomyces cerevisiae strains.
    Morita H, Hasunuma T, Vassileva M, Tsenkova R, Kondo A.
    Anal Chem; 2011 Jun 01; 83(11):4023-9. PubMed ID: 21561065
    [Abstract] [Full Text] [Related]

  • 10. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains.
    Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hägerdal B, Sauer U.
    Biotechnol Bioeng; 2004 Jul 05; 87(1):90-8. PubMed ID: 15211492
    [Abstract] [Full Text] [Related]

  • 11. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A, Sawayama S.
    Enzyme Microb Technol; 2011 May 06; 48(6-7):466-71. PubMed ID: 22113018
    [Abstract] [Full Text] [Related]

  • 12. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.
    Khattab SM, Saimura M, Kodaki T.
    J Biotechnol; 2013 Jun 10; 165(3-4):153-6. PubMed ID: 23578809
    [Abstract] [Full Text] [Related]

  • 13. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.
    Ha SJ, Kim SR, Choi JH, Park MS, Jin YS.
    Appl Microbiol Biotechnol; 2011 Oct 10; 92(1):77-84. PubMed ID: 21655987
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes.
    Konishi J, Fukuda A, Mutaguchi K, Uemura T.
    Biotechnol Lett; 2015 Aug 10; 37(8):1623-30. PubMed ID: 25994575
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S.
    Appl Microbiol Biotechnol; 2008 Nov 10; 81(2):243-55. PubMed ID: 18751695
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.