These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


454 related items for PubMed ID: 23376772

  • 1. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants.
    Song XQ, Liu LF, Jiang YJ, Zhang BC, Gao YP, Liu XL, Lin QS, Ling HQ, Zhou YH.
    Mol Plant; 2013 May; 6(3):768-80. PubMed ID: 23376772
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis.
    Xiong G, Li R, Qian Q, Song X, Liu X, Yu Y, Zeng D, Wan J, Li J, Zhou Y.
    Plant J; 2010 Oct; 64(1):56-70. PubMed ID: 20663087
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice.
    Wang D, Yuan S, Yin L, Zhao J, Guo B, Lan J, Li X.
    Plant Sci; 2012 Nov; 196():117-24. PubMed ID: 23017906
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan.
    Ueno D, Koyama E, Yamaji N, Ma JF.
    J Exp Bot; 2011 Apr; 62(7):2265-72. PubMed ID: 21127026
    [Abstract] [Full Text] [Related]

  • 11. Identification of transcription factors involved in rice secondary cell wall formation.
    Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M.
    Plant Cell Physiol; 2013 Nov; 54(11):1791-802. PubMed ID: 24089432
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq.
    Cao ZZ, Lin XY, Yang YJ, Guan MY, Xu P, Chen MX.
    BMC Plant Biol; 2019 Jun 11; 19(1):250. PubMed ID: 31185911
    [Abstract] [Full Text] [Related]

  • 14. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium.
    Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H.
    Plant Cell Physiol; 2012 Jan 11; 53(1):213-24. PubMed ID: 22123790
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth.
    Luan W, Liu Y, Zhang F, Song Y, Wang Z, Peng Y, Sun Z.
    Plant Biotechnol J; 2011 May 11; 9(4):513-24. PubMed ID: 20955181
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity.
    Wang F, Wang Z, Zhu C.
    Acta Biochim Biophys Sin (Shanghai); 2012 Oct 11; 44(10):886-93. PubMed ID: 23017837
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.