These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


531 related items for PubMed ID: 23377832

  • 1. Effects of pacing strategy on work done above critical power during high-intensity exercise.
    Chidnok W, Dimenna FJ, Bailey SJ, Wilkerson DP, Vanhatalo A, Jones AM.
    Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832
    [Abstract] [Full Text] [Related]

  • 2. Self-pacing increases critical power and improves performance during severe-intensity exercise.
    Black MI, Jones AM, Bailey SJ, Vanhatalo A.
    Appl Physiol Nutr Metab; 2015 Jul; 40(7):662-70. PubMed ID: 26088158
    [Abstract] [Full Text] [Related]

  • 3. Effects of priming exercise on VO2 kinetics and the power-duration relationship.
    Burnley M, Davison G, Baker JR.
    Med Sci Sports Exerc; 2011 Nov; 43(11):2171-9. PubMed ID: 21552161
    [Abstract] [Full Text] [Related]

  • 4. Exercise tolerance in intermittent cycling: application of the critical power concept.
    Chidnok W, Dimenna FJ, Bailey SJ, Vanhatalo A, Morton RH, Wilkerson DP, Jones AM.
    Med Sci Sports Exerc; 2012 May; 44(5):966-76. PubMed ID: 22033512
    [Abstract] [Full Text] [Related]

  • 5. Intensity-dependent tolerance to exercise after attaining V(O2) max in humans.
    Coats EM, Rossiter HB, Day JR, Miura A, Fukuba Y, Whipp BJ.
    J Appl Physiol (1985); 2003 Aug; 95(2):483-90. PubMed ID: 12665540
    [Abstract] [Full Text] [Related]

  • 6. V˙O2max may not be reached during exercise to exhaustion above critical power.
    Sawyer BJ, Morton RH, Womack CJ, Gaesser GA.
    Med Sci Sports Exerc; 2012 Aug; 44(8):1533-8. PubMed ID: 22330019
    [Abstract] [Full Text] [Related]

  • 7. Pulmonary O2 uptake kinetics as a determinant of high-intensity exercise tolerance in humans.
    Murgatroyd SR, Ferguson C, Ward SA, Whipp BJ, Rossiter HB.
    J Appl Physiol (1985); 2011 Jun; 110(6):1598-606. PubMed ID: 21415174
    [Abstract] [Full Text] [Related]

  • 8. A new VO₂max protocol allowing self-pacing in maximal incremental exercise.
    Mauger AR, Sculthorpe N.
    Br J Sports Med; 2012 Jan; 46(1):59-63. PubMed ID: 21505226
    [Abstract] [Full Text] [Related]

  • 9. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L, Thomas D.
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [Abstract] [Full Text] [Related]

  • 10. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant.
    Dekerle J, de Souza KM, de Lucas RD, Guglielmo LG, Greco CC, Denadai BS.
    PLoS One; 2015 May; 10(9):e0138428. PubMed ID: 26407169
    [Abstract] [Full Text] [Related]

  • 11. The constant work rate critical power protocol overestimates ramp incremental exercise performance.
    Black MI, Jones AM, Kelly JA, Bailey SJ, Vanhatalo A.
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2415-2422. PubMed ID: 27787608
    [Abstract] [Full Text] [Related]

  • 12. Modeling the expenditure and reconstitution of work capacity above critical power.
    Skiba PF, Chidnok W, Vanhatalo A, Jones AM.
    Med Sci Sports Exerc; 2012 Aug; 44(8):1526-32. PubMed ID: 22382171
    [Abstract] [Full Text] [Related]

  • 13. The VO2 response to exhaustive square wave exercise: influence of exercise intensity and mode.
    Draper SB, Wood DM, Fallowfield JL.
    Eur J Appl Physiol; 2003 Sep; 90(1-2):92-9. PubMed ID: 12883898
    [Abstract] [Full Text] [Related]

  • 14. Determination of critical power using a 3-min all-out cycling test.
    Vanhatalo A, Doust JH, Burnley M.
    Med Sci Sports Exerc; 2007 Mar; 39(3):548-55. PubMed ID: 17473782
    [Abstract] [Full Text] [Related]

  • 15. The curvature constant parameter of the power-duration curve for varied-power exercise.
    Fukuba Y, Miura A, Endo M, Kan A, Yanagawa K, Whipp BJ.
    Med Sci Sports Exerc; 2003 Aug; 35(8):1413-8. PubMed ID: 12900698
    [Abstract] [Full Text] [Related]

  • 16. Effects of nitrate on the power-duration relationship for severe-intensity exercise.
    Kelly J, Vanhatalo A, Wilkerson DP, Wylie LJ, Jones AM.
    Med Sci Sports Exerc; 2013 Sep; 45(9):1798-806. PubMed ID: 23475164
    [Abstract] [Full Text] [Related]

  • 17. Maximal lactate steady state, respiratory compensation threshold and critical power.
    Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P.
    Eur J Appl Physiol; 2003 May; 89(3-4):281-8. PubMed ID: 12736836
    [Abstract] [Full Text] [Related]

  • 18. Effects of prior very-heavy intensity exercise on indices of aerobic function and high-intensity exercise tolerance.
    Ferguson C, Whipp BJ, Cathcart AJ, Rossiter HB, Turner AP, Ward SA.
    J Appl Physiol (1985); 2007 Sep; 103(3):812-22. PubMed ID: 17540836
    [Abstract] [Full Text] [Related]

  • 19. A comparison of methods to estimate anaerobic capacity: Accumulated oxygen deficit and W' during constant and all-out work-rate profiles.
    Muniz-Pumares D, Pedlar C, Godfrey R, Glaister M.
    J Sports Sci; 2017 Dec; 35(23):2357-2364. PubMed ID: 28019724
    [Abstract] [Full Text] [Related]

  • 20. Responses during exhaustive exercise at critical power determined from the 3-min all-out test.
    Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Lewis RW, Camic CL, Schmidt RJ, Johnson GO.
    J Sports Sci; 2013 Dec; 31(5):537-45. PubMed ID: 23121405
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.