These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
250 related items for PubMed ID: 23379336
1. Comparative evolutionary genomics of medaka and three-spined stickleback fabp2a and fabp2b genes with fabp2 of zebrafish. Parmar MB, Wright JM. Genome; 2013 Jan; 56(1):27-37. PubMed ID: 23379336 [Abstract] [Full Text] [Related]
2. Comparative genomics and evolutionary diversification of the duplicated fabp6a and fabp6b genes in medaka and three-spined stickleback. Parmar MB, Venkatachalam AB, Wright JM. Comp Biochem Physiol Part D Genomics Proteomics; 2012 Dec; 7(4):311-21. PubMed ID: 23123309 [Abstract] [Full Text] [Related]
3. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes. Parmar MB, Wright JM. Genome; 2013 Nov; 56(11):691-701. PubMed ID: 24299108 [Abstract] [Full Text] [Related]
4. Genomic organization and transcription of the medaka and zebrafish cellular retinol-binding protein (rbp) genes. Parmar MB, Shams R, Wright JM. Mar Genomics; 2013 Sep; 11():1-10. PubMed ID: 23632098 [Abstract] [Full Text] [Related]
5. The evolutionary relationship of the transcriptionally active fabp11a (intronless) and fabp11b genes of medaka with fabp11 genes of other teleost fishes. Parmar MB, Venkatachalam AB, Wright JM. FEBS J; 2012 Jul; 279(13):2310-21. PubMed ID: 22520026 [Abstract] [Full Text] [Related]
8. Genomic organization of Atlantic salmon (Salmo salar) fatty acid binding protein (fabp2) genes reveals independent loss of duplicate loci in teleosts. Lai YY, Lubieniecki KP, Phillips RB, Chow W, Koop BF, Davidson WS. Mar Genomics; 2009 Jul; 2(3-4):193-200. PubMed ID: 21798188 [Abstract] [Full Text] [Related]
9. Hierarchical subfunctionalization of fabp1a, fabp1b and fabp10 tissue-specific expression may account for retention of these duplicated genes in the zebrafish (Danio rerio) genome. Sharma MK, Liu RZ, Thisse C, Thisse B, Denovan-Wright EM, Wright JM. FEBS J; 2006 Jul; 273(14):3216-29. PubMed ID: 16857010 [Abstract] [Full Text] [Related]
10. Sub-functionalization of duplicated genes in the evolution of nine-spined stickleback hatching enzyme. Kawaguchi M, Takahashi H, Takehana Y, Naruse K, Nishida M, Yasumasu S. J Exp Zool B Mol Dev Evol; 2013 May; 320(3):140-50. PubMed ID: 23554322 [Abstract] [Full Text] [Related]
11. Comparative genomics of duplicate γ-glutamyl transferase genes in teleosts: medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), green spotted pufferfish (Tetraodon nigroviridis), fugu (Takifugu rubripes), and zebrafish (Danio rerio). Law SH, Redelings BD, Kullman SW. J Exp Zool B Mol Dev Evol; 2012 Jan 15; 318(1):35-49. PubMed ID: 21898790 [Abstract] [Full Text] [Related]
12. Differential tissue-specific distribution of transcripts for the duplicated fatty acid-binding protein 10 (fabp10) genes in embryos, larvae and adult zebrafish (Danio rerio). Venkatachalam AB, Thisse C, Thisse B, Wright JM. FEBS J; 2009 Nov 15; 276(22):6787-97. PubMed ID: 19843178 [Abstract] [Full Text] [Related]
13. Tissue-specific transcriptional modulation of fatty acid-binding protein genes, fabp2, fabp3 and fabp6, by fatty acids and the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). Venkatachalam AB, Sawler DL, Wright JM. Gene; 2013 May 10; 520(1):14-21. PubMed ID: 23466978 [Abstract] [Full Text] [Related]
14. The evolutionary relationship between the duplicated copies of the zebrafish fabp11 gene and the tetrapod FABP4, FABP5, FABP8 and FABP9 genes. Karanth S, Denovan-Wright EM, Thisse C, Thisse B, Wright JM. FEBS J; 2008 Jun 10; 275(12):3031-40. PubMed ID: 18445037 [Abstract] [Full Text] [Related]
15. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications. Lu J, Peatman E, Tang H, Lewis J, Liu Z. BMC Genomics; 2012 Jun 15; 13():246. PubMed ID: 22702965 [Abstract] [Full Text] [Related]
16. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes. Venkatachalam AB, Parmar MB, Wright JM. Mol Genet Genomics; 2017 Aug 15; 292(4):699-727. PubMed ID: 28389698 [Abstract] [Full Text] [Related]
17. Identification, Phylogeny, and Function of fabp2 Paralogs in Two Non-Model Teleost Fish Species. Kaitetzidou E, Chatzifotis S, Antonopoulou E, Sarropoulou E. Mar Biotechnol (NY); 2015 Oct 15; 17(5):663-77. PubMed ID: 26272429 [Abstract] [Full Text] [Related]
18. Gene structure of the novel cytochrome P4501D1 genes in stickleback (Gasterosteus aculeatus) and medaka (Oryzias latipes). Goldstone JV, Stegeman JJ. Mar Environ Res; 2008 Jul 15; 66(1):19-20. PubMed ID: 18400289 [Abstract] [Full Text] [Related]
19. Hormones and receptors in fish: do duplicates matter? Roch GJ, Wu S, Sherwood NM. Gen Comp Endocrinol; 2009 Mar 15; 161(1):3-12. PubMed ID: 19007784 [Abstract] [Full Text] [Related]
20. Fox gene loci in Takifugu rubripes and Tetraodon nigroviridis genomes and comparison with those of medaka and zebrafish genomes. Shen X, Cui J, Gong Q. Genome; 2011 Dec 15; 54(12):965-72. PubMed ID: 22073989 [Abstract] [Full Text] [Related] Page: [Next] [New Search]