These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 23381832
1. Multifunctional Fe3O4-TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. Zeng L, Ren W, Xiang L, Zheng J, Chen B, Wu A. Nanoscale; 2013 Mar 07; 5(5):2107-13. PubMed ID: 23381832 [Abstract] [Full Text] [Related]
2. In vivo targeted magnetic resonance imaging and visualized photodynamic therapy in deep-tissue cancers using folic acid-functionalized superparamagnetic-upconversion nanocomposites. Zeng L, Luo L, Pan Y, Luo S, Lu G, Wu A. Nanoscale; 2015 May 21; 7(19):8946-54. PubMed ID: 25920333 [Abstract] [Full Text] [Related]
6. A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. Jin S, Zhou L, Gu Z, Tian G, Yan L, Ren W, Yin W, Liu X, Zhang X, Hu Z, Zhao Y. Nanoscale; 2013 Dec 07; 5(23):11910-8. PubMed ID: 24129918 [Abstract] [Full Text] [Related]
8. Redox-responsive dextran based theranostic nanoparticles for near-infrared/magnetic resonance imaging and magnetically targeted photodynamic therapy. Ding Z, Liu P, Hu D, Sheng Z, Yi H, Gao G, Wu Y, Zhang P, Ling S, Cai L. Biomater Sci; 2017 Mar 28; 5(4):762-771. PubMed ID: 28256661 [Abstract] [Full Text] [Related]
11. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer. Zeng L, Pan Y, Zou R, Zhang J, Tian Y, Teng Z, Wang S, Ren W, Xiao X, Zhang J, Zhang L, Li A, Lu G, Wu A. Biomaterials; 2016 Oct 28; 103():116-127. PubMed ID: 27376560 [Abstract] [Full Text] [Related]
12. Enhanced photocytotoxicity induced by a platinum diimine complex employing amine-functionalized magnetite-silica nanocomposites as delivery vehicles. Zhang Z, Zhu Y, Dai R, Zhang Y, Wang H, Li J. Photodiagnosis Photodyn Ther; 2018 Sep 28; 23():50-54. PubMed ID: 29870794 [Abstract] [Full Text] [Related]
13. Solution-combustion synthesis of doped TiO2 compounds and its potential antileishmanial activity mediated by photodynamic therapy. Lopera AA, Velásquez AMA, Clementino LC, Robledo S, Montoya A, de Freitas LM, Bezzon VDN, Fontana CR, Garcia C, Graminha MAS. J Photochem Photobiol B; 2018 Jun 28; 183():64-74. PubMed ID: 29689488 [Abstract] [Full Text] [Related]
15. Upconversion Nanoparticle-Induced Multimode Photodynamic Therapy Based on a Metal-Organic Framework/Titanium Dioxide Nanocomposite. Shi Z, Zhang K, Zada S, Zhang C, Meng X, Yang Z, Dong H. ACS Appl Mater Interfaces; 2020 Mar 18; 12(11):12600-12608. PubMed ID: 32096623 [Abstract] [Full Text] [Related]
19. Enhancement of the photokilling effect of aluminum phthalocyanine in photodynamic therapy by conjugating with nitrogen-doped TiO2 nanoparticles. Pan X, Xie J, Li Z, Chen M, Wang M, Wang PN, Chen L, Mi L. Colloids Surf B Biointerfaces; 2015 Jun 01; 130():292-8. PubMed ID: 25935263 [Abstract] [Full Text] [Related]
20. Polydopamine-Coated Magnetic Composite Particles with an Enhanced Photothermal Effect. Zheng R, Wang S, Tian Y, Jiang X, Fu D, Shen S, Yang W. ACS Appl Mater Interfaces; 2015 Jul 29; 7(29):15876-84. PubMed ID: 26151502 [Abstract] [Full Text] [Related] Page: [Next] [New Search]