These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


371 related items for PubMed ID: 23383678

  • 1. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase.
    Kim S, Baek SH, Lee K, Hahn JS.
    Microb Cell Fact; 2013 Feb 05; 12():14. PubMed ID: 23383678
    [Abstract] [Full Text] [Related]

  • 2. Constructing a yeast to express the largest cellulosome complex on the cell surface.
    Anandharaj M, Lin YJ, Rani RP, Nadendla EK, Ho MC, Huang CC, Cheng JF, Chang JJ, Li WH.
    Proc Natl Acad Sci U S A; 2020 Feb 04; 117(5):2385-2394. PubMed ID: 31953261
    [Abstract] [Full Text] [Related]

  • 3. Cellulosic ethanol production by combination of cellulase-displaying yeast cells.
    Baek SH, Kim S, Lee K, Lee JK, Hahn JS.
    Enzyme Microb Technol; 2012 Dec 10; 51(6-7):366-72. PubMed ID: 23040393
    [Abstract] [Full Text] [Related]

  • 4. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production.
    Tsai SL, Goyal G, Chen W.
    Appl Environ Microbiol; 2010 Nov 10; 76(22):7514-20. PubMed ID: 20889773
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose.
    Krauss J, Zverlov VV, Schwarz WH.
    Appl Environ Microbiol; 2012 Jun 10; 78(12):4301-7. PubMed ID: 22522677
    [Abstract] [Full Text] [Related]

  • 8. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.
    Hirano K, Nihei S, Hasegawa H, Haruki M, Hirano N.
    Appl Environ Microbiol; 2015 Jul 10; 81(14):4756-66. PubMed ID: 25956772
    [Abstract] [Full Text] [Related]

  • 9. In vitro assembly and cellulolytic activity of a β-glucosidase-integrated cellulosome complex.
    Hirano K, Saito T, Shinoda S, Haruki M, Hirano N.
    FEMS Microbiol Lett; 2019 Sep 01; 366(17):. PubMed ID: 31584652
    [Abstract] [Full Text] [Related]

  • 10. Enhanced cellulose degradation by targeted integration of a cohesin-fused β-glucosidase into the Clostridium thermocellum cellulosome.
    Gefen G, Anbar M, Morag E, Lamed R, Bayer EA.
    Proc Natl Acad Sci U S A; 2012 Jun 26; 109(26):10298-303. PubMed ID: 22689961
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol.
    Xu C, Qin Y, Li Y, Ji Y, Huang J, Song H, Xu J.
    Bioresour Technol; 2010 Dec 26; 101(24):9560-9. PubMed ID: 20702089
    [Abstract] [Full Text] [Related]

  • 13. Functional display of complex cellulosomes on the yeast surface via adaptive assembly.
    Tsai SL, DaSilva NA, Chen W.
    ACS Synth Biol; 2013 Jan 18; 2(1):14-21. PubMed ID: 23656322
    [Abstract] [Full Text] [Related]

  • 14. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme.
    Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A.
    Appl Environ Microbiol; 2004 Feb 18; 70(2):1207-12. PubMed ID: 14766607
    [Abstract] [Full Text] [Related]

  • 15. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae.
    Hyeon JE, Yu KO, Suh DJ, Suh YW, Lee SE, Lee J, Han SO.
    FEMS Microbiol Lett; 2010 Sep 01; 310(1):39-47. PubMed ID: 20637040
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production.
    Tsai SL, Oh J, Singh S, Chen R, Chen W.
    Appl Environ Microbiol; 2009 Oct 01; 75(19):6087-93. PubMed ID: 19684173
    [Abstract] [Full Text] [Related]

  • 18. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆.
    Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M.
    Bioresour Technol; 2018 Feb 01; 250():860-867. PubMed ID: 30001594
    [Abstract] [Full Text] [Related]

  • 19. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes.
    Moraïs S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA.
    mBio; 2012 Dec 11; 3(6):. PubMed ID: 23232718
    [Abstract] [Full Text] [Related]

  • 20. Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae.
    Lilly M, Fierobe HP, van Zyl WH, Volschenk H.
    FEMS Yeast Res; 2009 Dec 11; 9(8):1236-49. PubMed ID: 19744245
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.