These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
400 related items for PubMed ID: 23387595
1. Molecular dynamics study of self-agglomeration of charged fullerenes in solvents. Banerjee S. J Chem Phys; 2013 Jan 28; 138(4):044318. PubMed ID: 23387595 [Abstract] [Full Text] [Related]
3. Molecular modeling study of agglomeration of [6,6]-phenyl-C61-butyric acid methyl ester in solvents. Mortuza SM, Banerjee S. J Chem Phys; 2012 Dec 28; 137(24):244308. PubMed ID: 23277937 [Abstract] [Full Text] [Related]
4. Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. Hosseini A, Taylor S, Accorsi G, Armaroli N, Reed CA, Boyd PD. J Am Chem Soc; 2006 Dec 13; 128(49):15903-13. PubMed ID: 17147403 [Abstract] [Full Text] [Related]
5. Influence of the energy of charge transfer on non-covalent interactions between fullerenes and a designed bisporphyrin. Pal D, Ray A, Bhattacharya S. Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep 13; 95():317-30. PubMed ID: 22561755 [Abstract] [Full Text] [Related]
8. Solubility of C60 and PCBM in Organic Solvents. Wang CI, Hua CC. J Phys Chem B; 2015 Nov 12; 119(45):14496-504. PubMed ID: 26488132 [Abstract] [Full Text] [Related]
11. Aggregation of a C60-didodecyloxybenzene dyad: structure, dynamics, and mechanism of vesicle growth. Gayathri SS, Patnaik A. Langmuir; 2007 Apr 24; 23(9):4800-8. PubMed ID: 17388610 [Abstract] [Full Text] [Related]
12. DFT-based linear solvation energy relationships for the infrared spectral shifts of acetone in polar and nonpolar organic solvents. Chang CM. J Phys Chem A; 2008 Mar 20; 112(11):2482-8. PubMed ID: 18284222 [Abstract] [Full Text] [Related]
13. A molecular-dynamics simulation study of solvent-induced repulsion between C60 fullerenes in water. Li L, Bedrov D, Smith GD. J Chem Phys; 2005 Nov 22; 123(20):204504. PubMed ID: 16351278 [Abstract] [Full Text] [Related]
14. Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. Bedrov D, Smith GD, Davande H, Li L. J Phys Chem B; 2008 Feb 21; 112(7):2078-84. PubMed ID: 18229908 [Abstract] [Full Text] [Related]
16. Ordering fullerene materials at nanometer dimensions. Guldi DM, Zerbetto F, Georgakilas V, Prato M. Acc Chem Res; 2005 Jan 21; 38(1):38-43. PubMed ID: 15654735 [Abstract] [Full Text] [Related]
17. A theoretical elucidation on the solvent-dependent photosensitive behaviors of C60. Shen L, Ji HF, Zhang HY. Photochem Photobiol; 2006 Jan 21; 82(3):798-800. PubMed ID: 16420101 [Abstract] [Full Text] [Related]
18. Supramolecular self-organization in PEO-modified C60 fullerene/water solutions: influence of polymer molecular weight and nanoparticle concentration. Hooper JB, Bedrov D, Smith GD. Langmuir; 2008 May 06; 24(9):4550-7. PubMed ID: 18402490 [Abstract] [Full Text] [Related]
19. Coarse-grained potential models for phenyl-based molecules: II. Application to fullerenes. Chiu CC, DeVane R, Klein ML, Shinoda W, Moore PB, Nielsen SO. J Phys Chem B; 2010 May 20; 114(19):6394-400. PubMed ID: 20426450 [Abstract] [Full Text] [Related]
20. Hemicarceplexes modify the solubility and reduction potentials of C60. Wong TH, Chang JC, Lai CC, Liu YH, Peng SM, Chiu SH. J Org Chem; 2014 Apr 18; 79(8):3581-6. PubMed ID: 24665822 [Abstract] [Full Text] [Related] Page: [Next] [New Search]