These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 23390578

  • 1. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons.
    Sevinçli H, Sevik C, Caın T, Cuniberti G.
    Sci Rep; 2013; 3():1228. PubMed ID: 23390578
    [Abstract] [Full Text] [Related]

  • 2. Thermoelectric properties of graphene nanoribbons, junctions and superlattices.
    Chen Y, Jayasekera T, Calzolari A, Kim KW, Nardelli MB.
    J Phys Condens Matter; 2010 Sep 22; 22(37):372202. PubMed ID: 21403189
    [Abstract] [Full Text] [Related]

  • 3. Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons.
    Deng S, Li L, Guy OJ, Zhang Y.
    Phys Chem Chem Phys; 2019 Aug 21; 21(33):18161-18169. PubMed ID: 31389445
    [Abstract] [Full Text] [Related]

  • 4. Atomically precise bottom-up fabrication of graphene nanoribbons.
    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R.
    Nature; 2010 Jul 22; 466(7305):470-3. PubMed ID: 20651687
    [Abstract] [Full Text] [Related]

  • 5. Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap.
    Palacio I, Celis A, Nair MN, Gloter A, Zobelli A, Sicot M, Malterre D, Nevius MS, de Heer WA, Berger C, Conrad EH, Taleb-Ibrahimi A, Tejeda A.
    Nano Lett; 2015 Jan 14; 15(1):182-9. PubMed ID: 25457853
    [Abstract] [Full Text] [Related]

  • 6. Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene.
    Kim GH, Hwang DH, Woo SI.
    Phys Chem Chem Phys; 2012 Mar 14; 14(10):3530-6. PubMed ID: 22307403
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Highly Sensitive Weaving Sensor of Hybrid Graphene Nanoribbons and Carbon Nanotubes for Enhanced Pressure Sensing Function.
    Li Z, Li ZH, Zhang Y, Xu X, Cheng Y, Zhang Y, Zhao J, Wei N.
    ACS Sens; 2024 May 24; 9(5):2499-2508. PubMed ID: 38683974
    [Abstract] [Full Text] [Related]

  • 9. Magnetic response of conductance peak structure in junction-confined graphene nanoribbons.
    Yamamoto M, Wakabayashi K.
    Nanoscale; 2012 Feb 21; 4(4):1138-45. PubMed ID: 22080960
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption.
    Yu D, Liu F.
    Nano Lett; 2007 Oct 21; 7(10):3046-50. PubMed ID: 17845065
    [Abstract] [Full Text] [Related]

  • 12. Excellent Thermoelectric Properties in monolayer WSe2 Nanoribbons due to Ultralow Phonon Thermal Conductivity.
    Wang J, Xie F, Cao XH, An SC, Zhou WX, Tang LM, Chen KQ.
    Sci Rep; 2017 Jan 25; 7():41418. PubMed ID: 28120912
    [Abstract] [Full Text] [Related]

  • 13. Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene.
    Liu L, Zhang Y, Wang W, Gu C, Bai X, Wang E.
    Adv Mater; 2011 Mar 11; 23(10):1246-51. PubMed ID: 21381123
    [No Abstract] [Full Text] [Related]

  • 14. Graphene synthesis: Nanoribbons from the bottom-up.
    Hartley CS.
    Nat Chem; 2014 Feb 11; 6(2):91-2. PubMed ID: 24451581
    [No Abstract] [Full Text] [Related]

  • 15. Tuning thermoelectric properties of graphene/boron nitride heterostructures.
    Algharagholy LA, Al-Galiby Q, Marhoon HA, Sadeghi H, Abduljalil HM, Lambert CJ.
    Nanotechnology; 2015 Nov 27; 26(47):475401. PubMed ID: 26528629
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Enhanced Thermoelectric Performance of As-Grown Suspended Graphene Nanoribbons.
    Li QY, Feng T, Okita W, Komori Y, Suzuki H, Kato T, Kaneko T, Ikuta T, Ruan X, Takahashi K.
    ACS Nano; 2019 Aug 27; 13(8):9182-9189. PubMed ID: 31411858
    [Abstract] [Full Text] [Related]

  • 19. Width-tunable graphene nanoribbons on a SiC substrate with a controlled step height.
    Huang Q, Kim JJ, Ali G, Cho SO.
    Adv Mater; 2013 Feb 25; 25(8):1144-8. PubMed ID: 23233250
    [No Abstract] [Full Text] [Related]

  • 20. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
    Hu J, Ruan X, Chen YP.
    Nano Lett; 2009 Jul 25; 9(7):2730-5. PubMed ID: 19499898
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.