These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 23390960

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large-Area Nanopatterned Graphene.
    Safaei A, Chandra S, Leuenberger MN, Chanda D.
    ACS Nano; 2019 Jan 22; 13(1):421-428. PubMed ID: 30525437
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage.
    Hu H, Zhai F, Hu D, Li Z, Bai B, Yang X, Dai Q.
    Nanoscale; 2015 Dec 14; 7(46):19493-500. PubMed ID: 26530788
    [Abstract] [Full Text] [Related]

  • 7. Experimental demonstration of graphene plasmons working close to the near-infrared window.
    Wang Z, Li T, Almdal K, Asger Mortensen N, Xiao S, Ndoni S.
    Opt Lett; 2016 Nov 15; 41(22):5345-5348. PubMed ID: 27842143
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Chemically-doped graphene with improved surface plasmon characteristics: an optical near-field study.
    Zheng Z, Wang W, Ma T, Deng Z, Ke Y, Zhan R, Zou Q, Ren W, Chen J, She J, Zhang Y, Liu F, Chen H, Deng S, Xu N.
    Nanoscale; 2016 Oct 07; 8(37):16621-30. PubMed ID: 27503188
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Experimental observed plasmon near-field response in isolated suspended graphene resonators.
    Zhang N, Jiang X, Fan J, Luo W, Xiang Y, Wu W, Ren M, Zhang X, Cai W, Xu J.
    Nanotechnology; 2019 Dec 13; 30(50):505201. PubMed ID: 31491784
    [Abstract] [Full Text] [Related]

  • 15. Optical nano-imaging of gate-tunable graphene plasmons.
    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, García de Abajo FJ, Hillenbrand R, Koppens FH.
    Nature; 2012 Jul 05; 487(7405):77-81. PubMed ID: 22722861
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Hybridization of graphene-gold plasmons for active control of mid-infrared radiation.
    Feinstein MD, Almeida E.
    Sci Rep; 2024 Mar 20; 14(1):6733. PubMed ID: 38509246
    [Abstract] [Full Text] [Related]

  • 20. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.
    Zhang J, Zhu Z, Liu W, Yuan X, Qin S.
    Nanoscale; 2015 Aug 28; 7(32):13530-6. PubMed ID: 26201255
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.