These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method. Ensikat HJ, Mayser M, Barthlott W. Langmuir; 2012 Oct 09; 28(40):14338-46. PubMed ID: 22978578 [Abstract] [Full Text] [Related]
23. Superhydrophobic surfaces from hierarchically structured wrinkled polymers. Li Y, Dai S, John J, Carter KR. ACS Appl Mater Interfaces; 2013 Nov 13; 5(21):11066-73. PubMed ID: 24131534 [Abstract] [Full Text] [Related]
24. A flexible nanofiber-based membrane with superhydrophobic pinning properties. Hu L, Zhang S, Zhang Y, Li B. J Colloid Interface Sci; 2016 Jun 15; 472():167-72. PubMed ID: 27038279 [Abstract] [Full Text] [Related]
25. Surface-charge lithography for direct PDMS micro-patterning. Grilli S, Vespini V, Ferraro P. Langmuir; 2008 Dec 02; 24(23):13262-5. PubMed ID: 18986187 [Abstract] [Full Text] [Related]
26. Tunable two-dimensional non-close-packed microwell arrays using colloidal crystals as templates. Ren Z, Li X, Zhang J, Li W, Zhang X, Yang B. Langmuir; 2007 Jul 17; 23(15):8272-6. PubMed ID: 17579464 [Abstract] [Full Text] [Related]
27. Petal effect: a superhydrophobic state with high adhesive force. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L. Langmuir; 2008 Apr 15; 24(8):4114-9. PubMed ID: 18312016 [Abstract] [Full Text] [Related]
28. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M, Zheng Y, Zhai J, Jiang L. Acc Chem Res; 2010 Mar 16; 43(3):368-77. PubMed ID: 19954162 [Abstract] [Full Text] [Related]
32. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment. Synytska A, Ionov L, Grundke K, Stamm M. Langmuir; 2009 Mar 03; 25(5):3132-6. PubMed ID: 19437778 [Abstract] [Full Text] [Related]
33. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials. Liu L, Sheardown H. Biomaterials; 2005 Jan 03; 26(3):233-44. PubMed ID: 15262466 [Abstract] [Full Text] [Related]
34. A conventional route to scalable morphology-controlled regular structures and their superhydrophobic/hydrophilic properties for biochips application. Ren HX, Chen X, Huang XJ, Im M, Kim DH, Lee JH, Yoon JB, Gu N, Liu JH, Choi YK. Lab Chip; 2009 Aug 07; 9(15):2140-4. PubMed ID: 19606289 [Abstract] [Full Text] [Related]
36. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion. Peng S, Tian D, Miao X, Yang X, Deng W. J Colloid Interface Sci; 2013 Nov 01; 409():18-24. PubMed ID: 23981676 [Abstract] [Full Text] [Related]
37. Patterned Au/poly(dimethylsiloxane) substrate fabricated by chemical plating coupled with electrochemical etching for cell patterning. Bai HJ, Shao ML, Gou HL, Xu JJ, Chen HY. Langmuir; 2009 Sep 01; 25(17):10402-7. PubMed ID: 19415913 [Abstract] [Full Text] [Related]
38. Patterned PDMS based cell array system: a novel method for fast cell array fabrication. Hsieh CH, Huang CJ, Huang YY. Biomed Microdevices; 2010 Oct 01; 12(5):897-905. PubMed ID: 20577814 [Abstract] [Full Text] [Related]
39. Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications. Castro AG, Bastos AC, Galstyan V, Faglia G, Sberveglieri G, Miranda Salvado IM. Nanotechnology; 2014 Sep 12; 25(36):365701. PubMed ID: 25141030 [Abstract] [Full Text] [Related]