These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


251 related items for PubMed ID: 23396334

  • 1. Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
    Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM.
    Appl Environ Microbiol; 2013 Apr; 79(8):2588-95. PubMed ID: 23396334
    [Abstract] [Full Text] [Related]

  • 2. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
    Wang C, Zhou Z, Cai H, Chen Z, Xu H.
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352
    [Abstract] [Full Text] [Related]

  • 3. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
    Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM.
    J Bacteriol; 2013 Jun; 195(11):2573-84. PubMed ID: 23543710
    [Abstract] [Full Text] [Related]

  • 4. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum.
    Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S.
    Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034
    [Abstract] [Full Text] [Related]

  • 5. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum.
    Lindner SN, Seibold GM, Krämer R, Wendisch VF.
    Bioeng Bugs; 2011 May; 2(5):291-5. PubMed ID: 22008639
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in Corynebacterium glutamicum.
    Kobayashi S, Kawaguchi H, Shirai T, Ninomiya K, Takahashi K, Kondo A, Tsuge Y.
    ACS Synth Biol; 2020 Apr 17; 9(4):814-826. PubMed ID: 32202411
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation.
    Moon MW, Park SY, Choi SK, Lee JK.
    J Mol Microbiol Biotechnol; 2007 Apr 17; 12(1-2):43-50. PubMed ID: 17183210
    [Abstract] [Full Text] [Related]

  • 12. Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum.
    Marx A, Hans S, Möckel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O'Donohue M, Dunican LK.
    J Biotechnol; 2003 Sep 04; 104(1-3):185-97. PubMed ID: 12948638
    [Abstract] [Full Text] [Related]

  • 13. Elongation factor P is required for EIIGlc translation in Corynebacterium glutamicum due to an essential polyproline motif.
    Pinheiro B, Petrov DP, Guo L, Martins GB, Bramkamp M, Jung K.
    Mol Microbiol; 2021 Feb 04; 115(2):320-331. PubMed ID: 33012080
    [Abstract] [Full Text] [Related]

  • 14. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources.
    Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C.
    Appl Environ Microbiol; 2005 Dec 04; 71(12):8587-96. PubMed ID: 16332851
    [Abstract] [Full Text] [Related]

  • 15. Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
    Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF.
    Appl Environ Microbiol; 2011 Jun 04; 77(11):3571-81. PubMed ID: 21478323
    [Abstract] [Full Text] [Related]

  • 16. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
    Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK.
    FEMS Microbiol Lett; 2005 Mar 15; 244(2):259-66. PubMed ID: 15766777
    [Abstract] [Full Text] [Related]

  • 17. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant.
    Zhou Z, Wang C, Xu H, Chen Z, Cai H.
    J Ind Microbiol Biotechnol; 2015 Jul 15; 42(7):1073-82. PubMed ID: 25952119
    [Abstract] [Full Text] [Related]

  • 18. Optimal Ratio of Carbon Flux between Glycolysis and the Pentose Phosphate Pathway for Amino Acid Accumulation in Corynebacterium glutamicum.
    Murai K, Sasaki D, Kobayashi S, Yamaguchi A, Uchikura H, Shirai T, Sasaki K, Kondo A, Tsuge Y.
    ACS Synth Biol; 2020 Jul 17; 9(7):1615-1622. PubMed ID: 32602337
    [Abstract] [Full Text] [Related]

  • 19. Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum.
    Wang C, Cai H, Zhou Z, Zhang K, Chen Z, Chen Y, Wan H, Ouyang P.
    J Ind Microbiol Biotechnol; 2014 Aug 17; 41(8):1249-58. PubMed ID: 24859809
    [Abstract] [Full Text] [Related]

  • 20. Impact of CO2/HCO3- Availability on Anaplerotic Flux in Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum Strains.
    Krüger A, Wiechert J, Gätgens C, Polen T, Mahr R, Frunzke J.
    J Bacteriol; 2019 Oct 15; 201(20):. PubMed ID: 31358612
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.