These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


237 related items for PubMed ID: 23401165

  • 1. Arsenic geochemistry in a biostimulated aquifer: an aqueous speciation study.
    Stucker VK, Williams KH, Robbins MJ, Ranville JF.
    Environ Toxicol Chem; 2013 Jun; 32(6):1216-23. PubMed ID: 23401165
    [Abstract] [Full Text] [Related]

  • 2. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X, Ellis A, Wang Y, Xie Z, Duan M, Su C.
    Sci Total Environ; 2009 Jun 01; 407(12):3823-35. PubMed ID: 19344934
    [Abstract] [Full Text] [Related]

  • 3. Thioarsenic species associated with increased arsenic release during biostimulated subsurface sulfate reduction.
    Stucker VK, Silverman DR, Williams KH, Sharp JO, Ranville JF.
    Environ Sci Technol; 2014 Nov 18; 48(22):13367-75. PubMed ID: 25329793
    [Abstract] [Full Text] [Related]

  • 4. Effects of Fe-S-As coupled redox processes on arsenic mobilization in shallow aquifers of Datong Basin, northern China.
    Zhang J, Ma T, Yan Y, Xie X, Abass OK, Liu C, Zhao Z, Wang Z.
    Environ Pollut; 2018 Jun 18; 237():28-38. PubMed ID: 29466772
    [Abstract] [Full Text] [Related]

  • 5. Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy).
    Carraro A, Fabbri P, Giaretta A, Peruzzo L, Tateo F, Tellini F.
    Sci Total Environ; 2015 Nov 01; 532():581-94. PubMed ID: 26115337
    [Abstract] [Full Text] [Related]

  • 6. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment.
    Yabusaki SB, Fang Y, Williams KH, Murray CJ, Ward AL, Dayvault RD, Waichler SR, Newcomer DR, Spane FA, Long PE.
    J Contam Hydrol; 2011 Nov 01; 126(3-4):271-90. PubMed ID: 22115092
    [Abstract] [Full Text] [Related]

  • 7. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.
    Zachara JM, Long PE, Bargar J, Davis JA, Fox P, Fredrickson JK, Freshley MD, Konopka AE, Liu C, McKinley JP, Rockhold ML, Williams KH, Yabusaki SB.
    J Contam Hydrol; 2013 Apr 01; 147():45-72. PubMed ID: 23500840
    [Abstract] [Full Text] [Related]

  • 8. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin.
    Deng Y, Zheng T, Wang Y, Liu L, Jiang H, Ma T.
    Sci Total Environ; 2018 Apr 01; 619-620():1247-1258. PubMed ID: 29734603
    [Abstract] [Full Text] [Related]

  • 9. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment.
    Katsoyiannis IA, Hug SJ, Ammann A, Zikoudi A, Hatziliontos C.
    Sci Total Environ; 2007 Sep 20; 383(1-3):128-40. PubMed ID: 17570466
    [Abstract] [Full Text] [Related]

  • 10. Dissolved fulvic acids from a high arsenic aquifer shuttle electrons to enhance microbial iron reduction.
    Kulkarni HV, Mladenov N, McKnight DM, Zheng Y, Kirk MF, Nemergut DR.
    Sci Total Environ; 2018 Feb 15; 615():1390-1395. PubMed ID: 29751443
    [Abstract] [Full Text] [Related]

  • 11. Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China.
    Zhang J, Ma T, Feng L, Yan Y, Abass OK, Wang Z, Cai H.
    Sci Total Environ; 2017 Apr 15; 584-585():458-468. PubMed ID: 28185734
    [Abstract] [Full Text] [Related]

  • 12. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies.
    Beak DG, Wilkin RT.
    J Contam Hydrol; 2009 Apr 15; 106(1-2):15-28. PubMed ID: 19167132
    [Abstract] [Full Text] [Related]

  • 13. A mass balance approach to investigate arsenic cycling in a petroleum plume.
    Ziegler BA, Schreiber ME, Cozzarelli IM, Crystal Ng GH.
    Environ Pollut; 2017 Dec 15; 231(Pt 2):1351-1361. PubMed ID: 28943347
    [Abstract] [Full Text] [Related]

  • 14. Potential for Methanosarcina to Contribute to Uranium Reduction during Acetate-Promoted Groundwater Bioremediation.
    Holmes DE, Orelana R, Giloteaux L, Wang LY, Shrestha P, Williams K, Lovley DR, Rotaru AE.
    Microb Ecol; 2018 Oct 15; 76(3):660-667. PubMed ID: 29500492
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume.
    Ziegler BA, Schreiber ME, Cozzarelli IM.
    J Contam Hydrol; 2017 Sep 15; 204():90-101. PubMed ID: 28797670
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions.
    Paradis CJ, Jagadamma S, Watson DB, McKay LD, Hazen TC, Park M, Istok JD.
    J Contam Hydrol; 2016 Apr 15; 187():55-64. PubMed ID: 26897652
    [Abstract] [Full Text] [Related]

  • 20. Evaluating mobilization and transport of arsenic in sediments and groundwaters of Aquia aquifer, Maryland, USA.
    Haque S, Ji J, Johannesson KH.
    J Contam Hydrol; 2008 Jul 29; 99(1-4):68-84. PubMed ID: 18579256
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.