These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
252 related items for PubMed ID: 23408996
1. Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts. Vidal-Donet JM, Cárcel-Trullols J, Casanova B, Aguado C, Knecht E. PLoS One; 2013; 8(2):e55526. PubMed ID: 23408996 [Abstract] [Full Text] [Related]
2. Biochemical characterization of a lysosomal protease deficient in classical late infantile neuronal ceroid lipofuscinosis (LINCL) and development of an enzyme-based assay for diagnosis and exclusion of LINCL in human specimens and animal models. Sohar I, Sleat DE, Jadot M, Lobel P. J Neurochem; 1999 Aug; 73(2):700-11. PubMed ID: 10428067 [Abstract] [Full Text] [Related]
3. Atypical late infantile and juvenile forms of neuronal ceroid lipofuscinosis and their diagnostic difficulties. Wiśniewski KE, Zhong N, Kida E, Kaczmarski W, Kaczmarski A, Connell F, Brooks SS, Brown WT. Folia Neuropathol; 1997 Aug; 35(2):73-9. PubMed ID: 9377079 [Abstract] [Full Text] [Related]
4. Clinicopathological and molecular characterization of neuronal ceroid lipofuscinosis in the Portuguese population. Teixeira C, Guimarães A, Bessa C, Ferreira MJ, Lopes L, Pinto E, Pinto R, Boustany RM, Sá Miranda MC, Ribeiro MG. J Neurol; 2003 Jun; 250(6):661-7. PubMed ID: 12796825 [Abstract] [Full Text] [Related]
5. A function retained by the common mutant CLN3 protein is responsible for the late onset of juvenile neuronal ceroid lipofuscinosis. Kitzmüller C, Haines RL, Codlin S, Cutler DF, Mole SE. Hum Mol Genet; 2008 Jan 15; 17(2):303-12. PubMed ID: 17947292 [Abstract] [Full Text] [Related]
6. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Lojewski X, Staropoli JF, Biswas-Legrand S, Simas AM, Haliw L, Selig MK, Coppel SH, Goss KA, Petcherski A, Chandrachud U, Sheridan SD, Lucente D, Sims KB, Gusella JF, Sondhi D, Crystal RG, Reinhardt P, Sterneckert J, Schöler H, Haggarty SJ, Storch A, Hermann A, Cotman SL. Hum Mol Genet; 2014 Apr 15; 23(8):2005-22. PubMed ID: 24271013 [Abstract] [Full Text] [Related]
7. Cln3-mutations underlying juvenile neuronal ceroid lipofuscinosis cause significantly reduced levels of Palmitoyl-protein thioesterases-1 (Ppt1)-protein and Ppt1-enzyme activity in the lysosome. Appu AP, Bagh MB, Sadhukhan T, Mondal A, Casey S, Mukherjee AB. J Inherit Metab Dis; 2019 Sep 15; 42(5):944-954. PubMed ID: 31025705 [Abstract] [Full Text] [Related]
8. A mouse mutant deficient in both neuronal ceroid lipofuscinosis-associated proteins CLN3 and TPP1. Sleat DE, Banach-Petrosky W, Larrimore KE, Nemtsova Y, Wiseman JA, Najafi A, Johnson D, Poole TA, Takahashi K, Cooper JD, Lobel P. J Inherit Metab Dis; 2023 Jul 15; 46(4):720-734. PubMed ID: 37078466 [Abstract] [Full Text] [Related]
9. Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase. Ezaki J, Takeda-Ezaki M, Kominami E. J Biochem; 2000 Sep 15; 128(3):509-16. PubMed ID: 10965052 [Abstract] [Full Text] [Related]
10. Converging roles of PSENEN/PEN2 and CLN3 in the autophagy-lysosome system. Klein M, Kaleem A, Oetjen S, Wünkhaus D, Binkle L, Schilling S, Gjorgjieva M, Scholz R, Gruber-Schoffnegger D, Storch S, Kins S, Drewes G, Hoffmeister-Ullerich S, Kuhl D, Hermey G. Autophagy; 2022 Sep 15; 18(9):2068-2085. PubMed ID: 34964690 [Abstract] [Full Text] [Related]
11. Molecular diagnosis of and carrier screening for the neuronal ceroid lipofuscinoses. Zhong NA, Wisniewski KE, Ju W, Moroziewicz DN, Jurkiewicz A, McLendon L, Jenkins EC, Brown WT. Genet Test; 2000 Sep 15; 4(3):243-8. PubMed ID: 11142754 [Abstract] [Full Text] [Related]
12. A lysosomal proteinase, the late infantile neuronal ceroid lipofuscinosis gene (CLN2) product, is essential for degradation of a hydrophobic protein, the subunit c of ATP synthase. Ezaki J, Tanida I, Kanehagi N, Kominami E. J Neurochem; 1999 Jun 15; 72(6):2573-82. PubMed ID: 10349869 [Abstract] [Full Text] [Related]
13. Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis. Marques ARA, Di Spiezio A, Thießen N, Schmidt L, Grötzinger J, Lüllmann-Rauch R, Damme M, Storck SE, Pietrzik CU, Fogh J, Bär J, Mikhaylova M, Glatzel M, Bassal M, Bartsch U, Saftig P. Autophagy; 2020 May 15; 16(5):811-825. PubMed ID: 31282275 [Abstract] [Full Text] [Related]
14. Different molecular mechanisms involved in spontaneous and oxidative stress-induced mitochondrial fragmentation in tripeptidyl peptidase-1 (TPP-1)-deficient fibroblasts. Van Beersel G, Tihon E, Demine S, Hamer I, Jadot M, Arnould T. Biosci Rep; 2013 Feb 07; 33(2):e00023. PubMed ID: 23249249 [Abstract] [Full Text] [Related]
15. Intrathecal tripeptidyl-peptidase 1 reduces lysosomal storage in a canine model of late infantile neuronal ceroid lipofuscinosis. Vuillemenot BR, Katz ML, Coates JR, Kennedy D, Tiger P, Kanazono S, Lobel P, Sohar I, Xu S, Cahayag R, Keve S, Koren E, Bunting S, Tsuruda LS, O'Neill CA. Mol Genet Metab; 2011 Nov 07; 104(3):325-37. PubMed ID: 21784683 [Abstract] [Full Text] [Related]
16. Mitochondrial abnormalities in CLN2 and CLN3 forms of Batten disease. Dawson G, Kilkus J, Siakotos AN, Singh I. Mol Chem Neuropathol; 1996 Nov 07; 29(2-3):227-35. PubMed ID: 8971698 [Abstract] [Full Text] [Related]
17. Glial fibrillary acidic protein is elevated in the lysosomal storage disease classical late-infantile neuronal ceroid lipofuscinosis, but is not a component of the storage material. Xu S, Sleat DE, Jadot M, Lobel P. Biochem J; 2010 May 27; 428(3):355-62. PubMed ID: 20370715 [Abstract] [Full Text] [Related]
18. Classical late infantile neuronal ceroid lipofuscinosis fibroblasts are deficient in lysosomal tripeptidyl peptidase I. Vines DJ, Warburton MJ. FEBS Lett; 1999 Jan 25; 443(2):131-5. PubMed ID: 9989590 [Abstract] [Full Text] [Related]
19. Lysosomal degradation of cholecystokinin-(29-33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis. Bernardini F, Warburton MJ. Biochem J; 2002 Sep 01; 366(Pt 2):521-9. PubMed ID: 12038963 [Abstract] [Full Text] [Related]
20. [From gene to disease; from CLN1, CLN2 and CLN3 to neuronal ceroid lipofuscinosis]. Taschner PE, Losekoot M, Breuning MH, Hofman I, van Diggelen OP. Ned Tijdschr Geneeskd; 2005 Feb 05; 149(6):300-3. PubMed ID: 15730038 [Abstract] [Full Text] [Related] Page: [Next] [New Search]