These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 23411876

  • 1. A two-stage cultivation process for the growth enhancement of Chlorella vulgaris.
    Yen HW, Chang JT.
    Bioprocess Biosyst Eng; 2013 Nov; 36(11):1797-801. PubMed ID: 23411876
    [Abstract] [Full Text] [Related]

  • 2. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions.
    Liang Y, Sarkany N, Cui Y.
    Biotechnol Lett; 2009 Jul; 31(7):1043-9. PubMed ID: 19322523
    [Abstract] [Full Text] [Related]

  • 3. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.
    Mohammad Mirzaie MA, Kalbasi M, Mousavi SM, Ghobadian B.
    Prep Biochem Biotechnol; 2016 Jul; 46(2):150-6. PubMed ID: 25807048
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment.
    Bala Amutha K, Murugesan AG.
    Bioresour Technol; 2011 Jan; 102(1):194-9. PubMed ID: 20620045
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris.
    Münkel R, Schmid-Staiger U, Werner A, Hirth T.
    Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The comparison of lutein production by Scenesdesmus sp. in the autotrophic and the mixotrophic cultivation.
    Yen HW, Sun CH, Ma TW.
    Appl Biochem Biotechnol; 2011 Jun; 164(3):353-61. PubMed ID: 21132398
    [Abstract] [Full Text] [Related]

  • 12. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].
    Zheng H, Gao Z, Zhang Q, Huang H, Ji X, Sun H, Dou C.
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025
    [Abstract] [Full Text] [Related]

  • 13. Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions.
    Abedini Najafabadi H, Malekzadeh M, Jalilian F, Vossoughi M, Pazuki G.
    Bioresour Technol; 2015 Mar; 180():311-7. PubMed ID: 25621723
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions.
    Mujtaba G, Choi W, Lee CG, Lee K.
    Bioresour Technol; 2012 Nov; 123():279-83. PubMed ID: 22940330
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions.
    Adesanya VO, Davey MP, Scott SA, Smith AG.
    Bioresour Technol; 2014 Apr; 157():293-304. PubMed ID: 24576922
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.