These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 23412065

  • 1. Development of Saccharomyces cerevisiae reductase YOL151W mutants suitable for chiral alcohol synthesis using an NADH cofactor regeneration system.
    Yoon SA, Jung J, Park S, Kim HK.
    J Microbiol Biotechnol; 2013 Feb; 23(2):218-24. PubMed ID: 23412065
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Development of a bioconversion system using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis glucose dehydrogenase for chiral alcohol synthesis.
    Yoon SA, Kim HK.
    J Microbiol Biotechnol; 2013 Oct 28; 23(10):1395-402. PubMed ID: 23770562
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example.
    Katzberg M, Skorupa-Parachin N, Gorwa-Grauslund MF, Bertau M.
    Int J Mol Sci; 2010 Apr 14; 11(4):1735-58. PubMed ID: 20480039
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: enantioselectivity and enzyme-substrate docking studies.
    Jung J, Park HJ, Uhm KN, Kim D, Kim HK.
    Biochim Biophys Acta; 2010 Sep 14; 1804(9):1841-9. PubMed ID: 20601218
    [Abstract] [Full Text] [Related]

  • 9. Reversal of coenzyme specificity of 2,3-butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis.
    Ehsani M, Fernández MR, Biosca JA, Dequin S.
    Biotechnol Bioeng; 2009 Oct 01; 104(2):381-9. PubMed ID: 19507198
    [Abstract] [Full Text] [Related]

  • 10. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system.
    Liu J, Li Z.
    Biotechnol Bioeng; 2019 Mar 01; 116(3):536-542. PubMed ID: 30536736
    [Abstract] [Full Text] [Related]

  • 11. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.
    Zhao X, Tang J, Wang X, Yang R, Zhang X, Gu Y, Li X, Ma M.
    Yeast; 2015 May 01; 32(5):409-22. PubMed ID: 25656244
    [Abstract] [Full Text] [Related]

  • 12. Optimizing an artificial metabolic pathway: engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis.
    Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S.
    Biochemistry; 2002 May 21; 41(20):6226-36. PubMed ID: 12009883
    [Abstract] [Full Text] [Related]

  • 13. Structural insights into the cofactor-assisted substrate recognition of yeast methylglyoxal/isovaleraldehyde reductase Gre2.
    Guo PC, Bao ZZ, Ma XX, Xia Q, Li WF.
    Biochim Biophys Acta; 2014 Sep 21; 1844(9):1486-92. PubMed ID: 24879127
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Engineering of pyridine nucleotide specificity of nitrate reductase: mutagenesis of recombinant cytochrome b reductase fragment of Neurospora crassa NADPH:Nitrate reductase.
    Shiraishi N, Croy C, Kaur J, Campbell WH.
    Arch Biochem Biophys; 1998 Oct 01; 358(1):104-15. PubMed ID: 9750171
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.
    Gand M, Thöle C, Müller H, Brundiek H, Bashiri G, Höhne M.
    J Biotechnol; 2016 Jul 20; 230():11-8. PubMed ID: 27164259
    [Abstract] [Full Text] [Related]

  • 19. Identification of key sites determining the cofactor specificity and improvement of catalytic activity of a steroid 5β-reductase from Capsella rubella.
    Li Y, Pan H, Chang Y, Dong N, Zou L, Liang P, Tian W, Chang Z.
    Enzyme Microb Technol; 2020 Mar 20; 134():109483. PubMed ID: 32044030
    [Abstract] [Full Text] [Related]

  • 20. Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a "push-pull" mechanism for proton transfer in aldo-keto reductases.
    Schlegel BP, Jez JM, Penning TM.
    Biochemistry; 1998 Mar 10; 37(10):3538-48. PubMed ID: 9521675
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.