These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


148 related items for PubMed ID: 23414338

  • 1. Integrated control of blister blight disease in tea using the biocontrol agent Ochrobactrum anthropi strain BMO-111 with chemical fungicides.
    Sowndhararajan K, Marimuthu S, Manian S.
    J Appl Microbiol; 2013 May; 114(5):1491-9. PubMed ID: 23414338
    [Abstract] [Full Text] [Related]

  • 2. Biocontrol potential of phylloplane bacterium Ochrobactrum anthropi BMO-111 against blister blight disease of tea.
    Sowndhararajan K, Marimuthu S, Manian S.
    J Appl Microbiol; 2013 Jan; 114(1):209-18. PubMed ID: 23020645
    [Abstract] [Full Text] [Related]

  • 3. Evaluation of Ochrobactrum anthropi TRS-2 and its talc based formulation for enhancement of growth of tea plants and management of brown root rot disease.
    Chakraborty U, Chakraborty BN, Basnet M, Chakraborty AP.
    J Appl Microbiol; 2009 Aug; 107(2):625-34. PubMed ID: 19426277
    [Abstract] [Full Text] [Related]

  • 4. Bio efficacy of indigenous biological agents and selected fungicides against branch canker disease of (Macrophoma theicola) tea under field level.
    Jeyaraman M, Robert PSA.
    BMC Plant Biol; 2018 Oct 10; 18(1):222. PubMed ID: 30305029
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Tolerance of triazole-based fungicides by biocontrol agents used to control Fusarium head blight in wheat in Argentina.
    Palazzini JM, Torres AM, Chulze SN.
    Lett Appl Microbiol; 2018 May 10; 66(5):434-438. PubMed ID: 29478269
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. How Tea Plant Defends Against Blister Blight Disease: Facts Revealed and Unexplored Horizons.
    Mahadevan N, Sinniah GD, Gunasekaram P, Karunajeewa DGNP.
    Plant Dis; 2024 Aug 10; 108(8):2253-2263. PubMed ID: 38616396
    [Abstract] [Full Text] [Related]

  • 10. How the Global Tea Industry Copes With Fungal Diseases - Challenges and Opportunities.
    Pandey AK, Sinniah GD, Babu A, Tanti A.
    Plant Dis; 2021 Jul 10; 105(7):1868-1879. PubMed ID: 33734810
    [Abstract] [Full Text] [Related]

  • 11. Factors affecting the levels of tea polyphenols and caffeine in tea leaves.
    Lin YS, Tsai YJ, Tsay JS, Lin JK.
    J Agric Food Chem; 2003 Mar 26; 51(7):1864-73. PubMed ID: 12643643
    [Abstract] [Full Text] [Related]

  • 12. Contribution of leaf growth on the disappearance of fungicides used on tea under South Indian agroclimatic conditions.
    Karthika C, Muraleedharan NN.
    J Zhejiang Univ Sci B; 2009 Jun 26; 10(6):422-6. PubMed ID: 19489107
    [Abstract] [Full Text] [Related]

  • 13. Interactions among chemical components of Cocoa tea (Camellia ptilophylla Chang), a naturally low caffeine-containing tea species.
    Lin X, Chen Z, Zhang Y, Gao X, Luo W, Li B.
    Food Funct; 2014 Jun 26; 5(6):1175-85. PubMed ID: 24699984
    [Abstract] [Full Text] [Related]

  • 14. White and green teas (Camellia sinensis var. sinensis): variation in phenolic, methylxanthine, and antioxidant profiles.
    Unachukwu UJ, Ahmed S, Kavalier A, Lyles JT, Kennelly EJ.
    J Food Sci; 2010 Aug 01; 75(6):C541-8. PubMed ID: 20722909
    [Abstract] [Full Text] [Related]

  • 15. Use of biocontrol agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards.
    Rotolo C, De Miccolis Angelini RM, Dongiovanni C, Pollastro S, Fumarola G, Di Carolo M, Perrelli D, Natale P, Faretra F.
    Pest Manag Sci; 2018 Mar 01; 74(3):715-725. PubMed ID: 29044981
    [Abstract] [Full Text] [Related]

  • 16. Metabolic Changes of Caffeine in Tea Plant (Camellia sinensis (L.) O. Kuntze) as Defense Response to Colletotrichum fructicola.
    Wang YC, Qian WJ, Li NN, Hao XY, Wang L, Xiao B, Wang XC, Yang YJ.
    J Agric Food Chem; 2016 Sep 07; 64(35):6685-93. PubMed ID: 27541180
    [Abstract] [Full Text] [Related]

  • 17. CATECHINS PROFILE, CAFFEINE CONTENT AND ANTIOXIDANT ACTIVITY OF CAMELLIA SINENSIS TEAS COMMERCIALIZED IN ROMANIA.
    Luca VS, Stan AM, Trifan A, Miron A, Aprotosoaie AC.
    Rev Med Chir Soc Med Nat Iasi; 2016 Sep 07; 120(2):457-63. PubMed ID: 27483735
    [Abstract] [Full Text] [Related]

  • 18. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation.
    Sano T, Horie H, Matsunaga A, Hirono Y.
    J Sci Food Agric; 2018 Dec 07; 98(15):5666-5676. PubMed ID: 29722013
    [Abstract] [Full Text] [Related]

  • 19. Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide.
    Chandra S, Chakraborty N, Panda K, Acharya K.
    Plant Physiol Biochem; 2017 Jun 07; 115():298-307. PubMed ID: 28412634
    [Abstract] [Full Text] [Related]

  • 20. Copper oxychloride fungicide and its effect on growth and oxidative stress of potato plants.
    Ferreira LC, Scavroni J, da Silva JR, Cataneo AC, Martins D, Boaro CS.
    Pestic Biochem Physiol; 2014 Jun 07; 112():63-9. PubMed ID: 24974119
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.