These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


374 related items for PubMed ID: 23415558

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM, Booth PJ, Allen SJ, Khorana HG.
    J Mol Biol; 2001 Apr 27; 308(2):409-22. PubMed ID: 11327776
    [Abstract] [Full Text] [Related]

  • 3. Refolding of bacteriorhodopsin from expressed polypeptide fragments.
    Marti T.
    J Biol Chem; 1998 Apr 10; 273(15):9312-22. PubMed ID: 9535926
    [Abstract] [Full Text] [Related]

  • 4. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins.
    Hagn F, Etzkorn M, Raschle T, Wagner G.
    J Am Chem Soc; 2013 Feb 06; 135(5):1919-25. PubMed ID: 23294159
    [Abstract] [Full Text] [Related]

  • 5. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.
    Curnow P, Booth PJ.
    J Mol Biol; 2010 Nov 05; 403(4):630-42. PubMed ID: 20850459
    [Abstract] [Full Text] [Related]

  • 6. Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer.
    Curran AR, Templer RH, Booth PJ.
    Biochemistry; 1999 Jul 20; 38(29):9328-36. PubMed ID: 10413507
    [Abstract] [Full Text] [Related]

  • 7. Synthetic Biology-Based Solution NMR Studies on Membrane Proteins in Lipid Environments.
    Henrich E, Löhr F, Mezhyrova J, Laguerre A, Bernhard F, Dötsch V.
    Methods Enzymol; 2019 Jul 20; 614():143-185. PubMed ID: 30611423
    [Abstract] [Full Text] [Related]

  • 8. Expression, purification, and structural characterization of the bacteriorhodopsin-aspartyl transcarbamylase fusion protein.
    Turner GJ, Miercke LJ, Mitra AK, Stroud RM, Betlach MC, Winter-Vann A.
    Protein Expr Purif; 1999 Nov 20; 17(2):324-38. PubMed ID: 10545282
    [Abstract] [Full Text] [Related]

  • 9. Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance.
    Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères JL, Durand G, Zito F, Pucci B, Popot JL.
    Biochemistry; 2012 Feb 21; 51(7):1416-30. PubMed ID: 22304405
    [Abstract] [Full Text] [Related]

  • 10. Measuring membrane protein stability under native conditions.
    Chang YC, Bowie JU.
    Proc Natl Acad Sci U S A; 2014 Jan 07; 111(1):219-24. PubMed ID: 24367094
    [Abstract] [Full Text] [Related]

  • 11. Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin.
    Khorana HG.
    Proc Natl Acad Sci U S A; 1993 Feb 15; 90(4):1166-71. PubMed ID: 8433978
    [Abstract] [Full Text] [Related]

  • 12. Crystallogenesis of Membrane Proteins Mediated by Polymer-Bounded Lipid Nanodiscs.
    Broecker J, Eger BT, Ernst OP.
    Structure; 2017 Feb 07; 25(2):384-392. PubMed ID: 28089451
    [Abstract] [Full Text] [Related]

  • 13. How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus.
    Etzkorn M, Zoonens M, Catoire LJ, Popot JL, Hiller S.
    J Membr Biol; 2014 Oct 07; 247(9-10):965-70. PubMed ID: 24668145
    [Abstract] [Full Text] [Related]

  • 14. Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers.
    Bayburt TH, Sligar SG.
    Protein Sci; 2003 Nov 07; 12(11):2476-81. PubMed ID: 14573860
    [Abstract] [Full Text] [Related]

  • 15. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer.
    Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C, Keller S.
    Angew Chem Int Ed Engl; 2017 Feb 06; 56(7):1919-1924. PubMed ID: 28079955
    [Abstract] [Full Text] [Related]

  • 16. Amphipols: polymers that keep membrane proteins soluble in aqueous solutions.
    Tribet C, Audebert R, Popot JL.
    Proc Natl Acad Sci U S A; 1996 Dec 24; 93(26):15047-50. PubMed ID: 8986761
    [Abstract] [Full Text] [Related]

  • 17. Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin.
    Farooq A.
    Biochemistry; 1998 Oct 27; 37(43):15170-6. PubMed ID: 9790681
    [Abstract] [Full Text] [Related]

  • 18. Beyond detergent micelles: The advantages and applications of non-micellar and lipid-based membrane mimetics for solution-state NMR.
    Klöpfer K, Hagn F.
    Prog Nucl Magn Reson Spectrosc; 2019 Oct 27; 114-115():271-283. PubMed ID: 31779883
    [Abstract] [Full Text] [Related]

  • 19. Isolation, folding and structural investigations of the amino acid transporter OEP16.
    Ni da Q, Zook J, Klewer DA, Nieman RA, Soll J, Fromme P.
    Protein Expr Purif; 2011 Dec 27; 80(2):157-68. PubMed ID: 21878393
    [Abstract] [Full Text] [Related]

  • 20. Reduction of membrane protein hydrophobicity by site-directed mutagenesis: introduction of multiple polar residues in helix D of bacteriorhodopsin.
    Chen GQ, Gouaux E.
    Protein Eng; 1997 Sep 27; 10(9):1061-6. PubMed ID: 9464570
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.