These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
155 related items for PubMed ID: 23417112
1. Carbon quantum dot sensitized TiO₂ nanotube arrays for photoelectrochemical hydrogen generation under visible light. Zhang X, Wang F, Huang H, Li H, Han X, Liu Y, Kang Z. Nanoscale; 2013 Mar 21; 5(6):2274-8. PubMed ID: 23417112 [Abstract] [Full Text] [Related]
2. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Cheng C, Karuturi SK, Liu L, Liu J, Li H, Su LT, Tok AI, Fan HJ. Small; 2012 Jan 09; 8(1):37-42. PubMed ID: 22009604 [Abstract] [Full Text] [Related]
3. Carbon nitride polymer sensitized TiO2 nanotube arrays with enhanced visible light photoelectrochemical and photocatalytic performance. Zhou X, Peng F, Wang H, Yu H, Fang Y. Chem Commun (Camb); 2011 Oct 07; 47(37):10323-5. PubMed ID: 21853202 [Abstract] [Full Text] [Related]
4. Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential. Zeng X, Bao J, Han M, Tu W, Dai Z. Biosens Bioelectron; 2014 Apr 15; 54():331-8. PubMed ID: 24291752 [Abstract] [Full Text] [Related]
7. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. Song P, Zhang X, Sun M, Cui X, Lin Y. Nanoscale; 2012 Mar 07; 4(5):1800-4. PubMed ID: 22297577 [Abstract] [Full Text] [Related]
11. Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. Xie Y, Ali G, Yoo SH, Cho SO. ACS Appl Mater Interfaces; 2010 Oct 07; 2(10):2910-4. PubMed ID: 20849087 [Abstract] [Full Text] [Related]
13. The photoelectrochemical exploration of multifunctional TiO2 mesocrystals and its enzyme-assisted biosensing application. Dai H, Zhang S, Gong L, Li Y, Xu G, Lin Y, Hong Z. Biosens Bioelectron; 2015 Oct 15; 72():18-24. PubMed ID: 25957072 [Abstract] [Full Text] [Related]
14. Recyclable and high-sensitivity electrochemical biosensing platform composed of carbon-doped TiO2 nanotube arrays. Hu L, Huo K, Chen R, Gao B, Fu J, Chu PK. Anal Chem; 2011 Nov 01; 83(21):8138-44. PubMed ID: 21928805 [Abstract] [Full Text] [Related]
15. Cu2O loaded titanate nanotube arrays for simultaneously photoelectrochemical ibuprofen oxidation and hydrogen generation. Chang KL, Sun Q, Peng YP, Lai SW, Sung M, Huang CY, Kuo HW, Sun J, Lin YC. Chemosphere; 2016 May 01; 150():605-614. PubMed ID: 26899855 [Abstract] [Full Text] [Related]
16. In situ enzymatic ascorbic acid production as electron donor for CdS quantum dots equipped TiO2 nanotubes: a general and efficient approach for new photoelectrochemical immunoassay. Zhao WW, Ma ZY, Yan DY, Xu JJ, Chen HY. Anal Chem; 2012 Dec 18; 84(24):10518-21. PubMed ID: 23198754 [Abstract] [Full Text] [Related]
17. A carbon nanotube/quantum dot based photoelectrochemical biosensing platform for the direct detection of microRNAs. Cao H, Liu S, Tu W, Bao J, Dai Z. Chem Commun (Camb); 2014 Nov 11; 50(87):13315-8. PubMed ID: 25228098 [Abstract] [Full Text] [Related]
18. Photoelectrochemical TiO2 nanotube arrays biosensor for asulam determination based on in-situ generation of quantum dots. Tian J, Li Y, Dong J, Huang M, Lu J. Biosens Bioelectron; 2018 Jul 01; 110():1-7. PubMed ID: 29573621 [Abstract] [Full Text] [Related]
19. Effect of Nitrogen Doping Level on the Performance of N-Doped Carbon Quantum Dot/TiO2 Composites for Photocatalytic Hydrogen Evolution. Shi R, Li Z, Yu H, Shang L, Zhou C, Waterhouse GIN, Wu LZ, Zhang T. ChemSusChem; 2017 Nov 23; 10(22):4650-4656. PubMed ID: 28671326 [Abstract] [Full Text] [Related]