These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
214 related items for PubMed ID: 23418354
1. Niflumic acid disrupts marine spermatozoan chemotaxis without impairing the spatiotemporal detection of chemoattractant gradients. Guerrero A, Espinal J, Wood CD, Rendón JM, Carneiro J, Martínez-Mekler G, Darszon A. J Cell Sci; 2013 Mar 15; 126(Pt 6):1477-87. PubMed ID: 23418354 [Abstract] [Full Text] [Related]
2. Altering the speract-induced ion permeability changes that generate flagellar Ca2+ spikes regulates their kinetics and sea urchin sperm motility. Wood CD, Nishigaki T, Tatsu Y, Yumoto N, Baba SA, Whitaker M, Darszon A. Dev Biol; 2007 Jun 15; 306(2):525-37. PubMed ID: 17467684 [Abstract] [Full Text] [Related]
3. Tuning sperm chemotaxis by calcium burst timing. Guerrero A, Nishigaki T, Carneiro J, Yoshiro Tatsu, Wood CD, Darszon A. Dev Biol; 2010 Aug 01; 344(1):52-65. PubMed ID: 20435032 [Abstract] [Full Text] [Related]
4. In silico determination of the effect of multi-target drugs on calcium dynamics signaling network underlying sea urchin spermatozoa motility. Espinal-Enríquez J, Darszon A, Guerrero A, Martínez-Mekler G. PLoS One; 2014 Aug 01; 9(8):e104451. PubMed ID: 25162222 [Abstract] [Full Text] [Related]
5. Revisiting the role of H+ in chemotactic signaling of sperm. Solzin J, Helbig A, Van Q, Brown JE, Hildebrand E, Weyand I, Kaupp UB. J Gen Physiol; 2004 Aug 01; 124(2):115-24. PubMed ID: 15277573 [Abstract] [Full Text] [Related]
6. The rate of change in Ca(2+) concentration controls sperm chemotaxis. Alvarez L, Dai L, Friedrich BM, Kashikar ND, Gregor I, Pascal R, Kaupp UB. J Cell Biol; 2012 Mar 05; 196(5):653-63. PubMed ID: 22371558 [Abstract] [Full Text] [Related]
8. Single cell imaging reveals that the motility regulator speract induces a flagellar alkalinization that precedes and is independent of Ca²⁺ influx in sea urchin spermatozoa. González-Cota AL, Silva PÂ, Carneiro J, Darszon A. FEBS Lett; 2015 Jul 22; 589(16):2146-54. PubMed ID: 26143372 [Abstract] [Full Text] [Related]
9. Sperm chemotaxis is driven by the slope of the chemoattractant concentration field. Ramírez-Gómez HV, Jimenez Sabinina V, Velázquez Pérez M, Beltran C, Carneiro J, Wood CD, Tuval I, Darszon A, Guerrero A. Elife; 2020 Mar 09; 9():. PubMed ID: 32149603 [Abstract] [Full Text] [Related]
10. Network model predicts that CatSper is the main Ca2+ channel in the regulation of sea urchin sperm motility. Espinal-Enríquez J, Priego-Espinosa DA, Darszon A, Beltrán C, Martínez-Mekler G. Sci Rep; 2017 Jun 26; 7(1):4236. PubMed ID: 28652586 [Abstract] [Full Text] [Related]
11. Tuning sperm chemotaxis. Guerrero A, Wood CD, Nishigaki T, Carneiro J, Darszon A. Biochem Soc Trans; 2010 Oct 26; 38(5):1270-4. PubMed ID: 20863297 [Abstract] [Full Text] [Related]
12. What is the core oscillator in the speract-activated pathway of the Strongylocentrotus purpuratus sperm flagellum? Aguilera LU, Galindo BE, Sánchez D, Santillán M. Biophys J; 2012 Jun 06; 102(11):2481-8. PubMed ID: 22713563 [Abstract] [Full Text] [Related]
13. Real-time analysis of the role of Ca(2+) in flagellar movement and motility in single sea urchin sperm. Wood CD, Nishigaki T, Furuta T, Baba SA, Darszon A. J Cell Biol; 2005 Jun 06; 169(5):725-31. PubMed ID: 15928204 [Abstract] [Full Text] [Related]
14. Participation of a K(+) channel modulated directly by cGMP in the speract-induced signaling cascade of strongylocentrotus purpuratus sea urchin sperm. Galindo BE, Beltrán C, Cragoe EJ, Darszon A. Dev Biol; 2000 May 15; 221(2):285-94. PubMed ID: 10790326 [Abstract] [Full Text] [Related]
15. A K+-selective cGMP-gated ion channel controls chemosensation of sperm. Strünker T, Weyand I, Bönigk W, Van Q, Loogen A, Brown JE, Kashikar N, Hagen V, Krause E, Kaupp UB. Nat Cell Biol; 2006 Oct 15; 8(10):1149-54. PubMed ID: 16964244 [Abstract] [Full Text] [Related]
16. Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility. Darszon A, Guerrero A, Galindo BE, Nishigaki T, Wood CD. Int J Dev Biol; 2008 Oct 15; 52(5-6):595-606. PubMed ID: 18649273 [Abstract] [Full Text] [Related]
17. Time-resolved sperm responses to an egg peptide measured by stopped-flow fluorometry. Nishigaki T, Zamudio FZ, Possani LD, Darszon A. Biochem Biophys Res Commun; 2001 Jun 08; 284(2):531-5. PubMed ID: 11394914 [Abstract] [Full Text] [Related]
18. A sea urchin egg jelly peptide induces a cGMP-mediated decrease in sperm intracellular Ca(2+) before its increase. Nishigaki T, Wood CD, Tatsu Y, Yumoto N, Furuta T, Elias D, Shiba K, Baba SA, Darszon A. Dev Biol; 2004 Aug 15; 272(2):376-88. PubMed ID: 15282155 [Abstract] [Full Text] [Related]
19. The computational sperm cell. Alvarez L, Friedrich BM, Gompper G, Kaupp UB. Trends Cell Biol; 2014 Mar 15; 24(3):198-207. PubMed ID: 24342435 [Abstract] [Full Text] [Related]
20. Speract receptors are localized on sea urchin sperm flagella using a fluorescent peptide analog. Cardullo RA, Herrick SB, Peterson MJ, Dangott LJ. Dev Biol; 1994 Apr 15; 162(2):600-7. PubMed ID: 8150218 [Abstract] [Full Text] [Related] Page: [Next] [New Search]