These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
172 related items for PubMed ID: 23418461
1. Expression profiles of SnoN in normal and cancerous human tissues support its tumor suppressor role in human cancer. Jahchan NS, Ouyang G, Luo K. PLoS One; 2013; 8(2):e55794. PubMed ID: 23418461 [Abstract] [Full Text] [Related]
2. Dual role of SnoN in mammalian tumorigenesis. Zhu Q, Krakowski AR, Dunham EE, Wang L, Bandyopadhyay A, Berdeaux R, Martin GS, Sun L, Luo K. Mol Cell Biol; 2007 Jan; 27(1):324-39. PubMed ID: 17074815 [Abstract] [Full Text] [Related]
3. SnoN in mammalian development, function and diseases. Jahchan NS, Luo K. Curr Opin Pharmacol; 2010 Dec; 10(6):670-5. PubMed ID: 20822955 [Abstract] [Full Text] [Related]
6. SnoN overexpression is predictive of poor survival in patients with esophageal squamous cell carcinoma. Akagi I, Miyashita M, Makino H, Nomura T, Hagiwara N, Takahashi K, Cho K, Mishima T, Takizawa T, Tajiri T. Ann Surg Oncol; 2008 Oct; 15(10):2965-75. PubMed ID: 18612694 [Abstract] [Full Text] [Related]
7. Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma. Fukuchi M, Nakajima M, Fukai Y, Miyazaki T, Masuda N, Sohda M, Manda R, Tsukada K, Kato H, Kuwano H. Int J Cancer; 2004 Mar 01; 108(6):818-24. PubMed ID: 14712482 [Abstract] [Full Text] [Related]
8. Inability of transforming growth factor-beta to cause SnoN degradation leads to resistance to transforming growth factor-beta-induced growth arrest in esophageal cancer cells. Edmiston JS, Yeudall WA, Chung TD, Lebman DA. Cancer Res; 2005 Jun 01; 65(11):4782-8. PubMed ID: 15930298 [Abstract] [Full Text] [Related]
9. SnoN Antagonizes the Hippo Kinase Complex to Promote TAZ Signaling during Breast Carcinogenesis. Zhu Q, Le Scolan E, Jahchan N, Ji X, Xu A, Luo K. Dev Cell; 2016 Jun 06; 37(5):399-412. PubMed ID: 27237790 [Abstract] [Full Text] [Related]
10. The influence of SnoN gene silencing by siRNA on the cell proliferation and apoptosis of human pancreatic cancer cells. Liu C, Zhang H, Zang X, Wang C, Kong Y, Zhang H. Diagn Pathol; 2015 Apr 18; 10():30. PubMed ID: 25907906 [Abstract] [Full Text] [Related]
11. Ski/SnoN expression in the sequence metaplasia-dysplasia-adenocarcinoma of Barrett's esophagus. Villanacci V, Bellone G, Battaglia E, Rossi E, Carbone A, Prati A, Verna C, Niola P, Morelli A, Grassini M, Bassotti G. Hum Pathol; 2008 Mar 18; 39(3):403-9. PubMed ID: 18261624 [Abstract] [Full Text] [Related]
12. Cooperative involvement of NFAT and SnoN mediates transforming growth factor-β (TGF-β) induced EMT in metastatic breast cancer (MDA-MB 231) cells. Sengupta S, Jana S, Biswas S, Mandal PK, Bhattacharyya A. Clin Exp Metastasis; 2013 Dec 18; 30(8):1019-31. PubMed ID: 23832742 [Abstract] [Full Text] [Related]
13. TGF-beta repressors SnoN and Ski are implicated in human colorectal carcinogenesis. Bravou V, Antonacopoulou A, Papadaki H, Floratou K, Stavropoulos M, Episkopou V, Petropoulou C, Kalofonos H. Cell Oncol; 2009 Dec 18; 31(1):41-51. PubMed ID: 19096149 [Abstract] [Full Text] [Related]
14. Cytoplasmic SnoN in normal tissues and nonmalignant cells antagonizes TGF-beta signaling by sequestration of the Smad proteins. Krakowski AR, Laboureau J, Mauviel A, Bissell MJ, Luo K. Proc Natl Acad Sci U S A; 2005 Aug 30; 102(35):12437-42. PubMed ID: 16109768 [Abstract] [Full Text] [Related]
15. Overexpression of SnoN/SkiL, amplified at the 3q26.2 locus, in ovarian cancers: a role in ovarian pathogenesis. Nanjundan M, Cheng KW, Zhang F, Lahad J, Kuo WL, Schmandt R, Smith-McCune K, Fishman D, Gray JW, Mills GB. Mol Oncol; 2008 Aug 30; 2(2):164-81. PubMed ID: 19383336 [Abstract] [Full Text] [Related]
16. SnoN: bridging neurobiology and cancer biology. Pot I, Ikeuchi Y, Bonni A, Bonni S. Curr Mol Med; 2010 Oct 30; 10(7):667-73. PubMed ID: 20712586 [Abstract] [Full Text] [Related]
17. Genistein suppressed epithelial-mesenchymal transition and migration efficacies of BG-1 ovarian cancer cells activated by estrogenic chemicals via estrogen receptor pathway and downregulation of TGF-β signaling pathway. Kim YS, Choi KC, Hwang KA. Phytomedicine; 2015 Oct 15; 22(11):993-9. PubMed ID: 26407941 [Abstract] [Full Text] [Related]
18. Ski-related novel protein N (SnoN), a negative controller of transforming growth factor-beta signaling, is a prognostic marker in estrogen receptor-positive breast carcinomas. Zhang F, Lundin M, Ristimäki A, Heikkilä P, Lundin J, Isola J, Joensuu H, Laiho M. Cancer Res; 2003 Aug 15; 63(16):5005-10. PubMed ID: 12941827 [Abstract] [Full Text] [Related]
20. Phospholipid Scramblase 1, an interferon-regulated gene located at 3q23, is regulated by SnoN/SkiL in ovarian cancer cells. Kodigepalli KM, Anur P, Spellman P, Sims PJ, Nanjundan M. Mol Cancer; 2013 Apr 26; 12():32. PubMed ID: 23621864 [Abstract] [Full Text] [Related] Page: [Next] [New Search]