These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 23425461

  • 1. Explicitly correlated atomic orbital basis second order Møller-Plesset theory.
    Hollman DS, Wilke JJ, Schaefer HF.
    J Chem Phys; 2013 Feb 14; 138(6):064107. PubMed ID: 23425461
    [Abstract] [Full Text] [Related]

  • 2. Efficient distance-including integral screening in linear-scaling Møller-Plesset perturbation theory.
    Maurer SA, Lambrecht DS, Kussmann J, Ochsenfeld C.
    J Chem Phys; 2013 Jan 07; 138(1):014101. PubMed ID: 23298022
    [Abstract] [Full Text] [Related]

  • 3. General orbital invariant MP2-F12 theory.
    Werner HJ, Adler TB, Manby FR.
    J Chem Phys; 2007 Apr 28; 126(16):164102. PubMed ID: 17477584
    [Abstract] [Full Text] [Related]

  • 4. On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet?
    Patkowski K.
    J Chem Phys; 2012 Jul 21; 137(3):034103. PubMed ID: 22830679
    [Abstract] [Full Text] [Related]

  • 5. Linear-scaling symmetry-adapted perturbation theory with scaled dispersion.
    Maurer SA, Beer M, Lambrecht DS, Ochsenfeld C.
    J Chem Phys; 2013 Nov 14; 139(18):184104. PubMed ID: 24320251
    [Abstract] [Full Text] [Related]

  • 6. Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation.
    Valeev EF, Janssen CL.
    J Chem Phys; 2004 Jul 15; 121(3):1214-27. PubMed ID: 15260663
    [Abstract] [Full Text] [Related]

  • 7. An atomic orbital-based reformulation of energy gradients in second-order Møller-Plesset perturbation theory.
    Schweizer S, Doser B, Ochsenfeld C.
    J Chem Phys; 2008 Apr 21; 128(15):154101. PubMed ID: 18433184
    [Abstract] [Full Text] [Related]

  • 8. Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory.
    Werner HJ.
    J Chem Phys; 2008 Sep 14; 129(10):101103. PubMed ID: 19044900
    [Abstract] [Full Text] [Related]

  • 9. Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions.
    Li W.
    J Chem Phys; 2013 Jan 07; 138(1):014106. PubMed ID: 23298027
    [Abstract] [Full Text] [Related]

  • 10. Tighter multipole-based integral estimates and parallel implementation of linear-scaling AO-MP2 theory.
    Doser B, Lambrecht DS, Ochsenfeld C.
    Phys Chem Chem Phys; 2008 Jun 21; 10(23):3335-44. PubMed ID: 18535715
    [Abstract] [Full Text] [Related]

  • 11. Cholesky-decomposed densities in Laplace-based second-order Møller-Plesset perturbation theory.
    Zienau J, Clin L, Doser B, Ochsenfeld C.
    J Chem Phys; 2009 May 28; 130(20):204112. PubMed ID: 19485442
    [Abstract] [Full Text] [Related]

  • 12. Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions.
    Marchetti O, Werner HJ.
    Phys Chem Chem Phys; 2008 Jun 21; 10(23):3400-9. PubMed ID: 18535723
    [Abstract] [Full Text] [Related]

  • 13. SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals.
    Pavošević F, Pinski P, Riplinger C, Neese F, Valeev EF.
    J Chem Phys; 2016 Apr 14; 144(14):144109. PubMed ID: 27083710
    [Abstract] [Full Text] [Related]

  • 14. Scalable Electron Correlation Methods. 2. Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size.
    Ma Q, Werner HJ.
    J Chem Theory Comput; 2015 Nov 10; 11(11):5291-304. PubMed ID: 26574323
    [Abstract] [Full Text] [Related]

  • 15. Communications: Intramolecular basis set superposition error as a measure of basis set incompleteness: can one reach the basis set limit without extrapolation?
    Balabin RM.
    J Chem Phys; 2010 Jun 07; 132(21):211103. PubMed ID: 20528011
    [Abstract] [Full Text] [Related]

  • 16. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria.
    Doser B, Lambrecht DS, Kussmann J, Ochsenfeld C.
    J Chem Phys; 2009 Feb 14; 130(6):064107. PubMed ID: 19222267
    [Abstract] [Full Text] [Related]

  • 17. Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals.
    Hättig C, Tew DP, Helmich B.
    J Chem Phys; 2012 May 28; 136(20):204105. PubMed ID: 22667538
    [Abstract] [Full Text] [Related]

  • 18. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.
    Usvyat D, Civalleri B, Maschio L, Dovesi R, Pisani C, Schütz M.
    J Chem Phys; 2011 Jun 07; 134(21):214105. PubMed ID: 21663342
    [Abstract] [Full Text] [Related]

  • 19. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method.
    Fedorov DG, Kitaura K.
    J Chem Phys; 2004 Aug 08; 121(6):2483-90. PubMed ID: 15281845
    [Abstract] [Full Text] [Related]

  • 20. Scalable electron correlation methods I.: PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors.
    Werner HJ, Knizia G, Krause C, Schwilk M, Dornbach M.
    J Chem Theory Comput; 2015 Feb 10; 11(2):484-507. PubMed ID: 26580908
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.