These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
415 related items for PubMed ID: 23428212
21. Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: mechanical and electrical performance beyond carbon-fiber composites. Cheng Q, Wang B, Zhang C, Liang Z. Small; 2010 Mar 22; 6(6):763-7. PubMed ID: 20183814 [Abstract] [Full Text] [Related]
22. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils. Hiraoki R, Ono Y, Saito T, Isogai A. Biomacromolecules; 2015 Feb 09; 16(2):675-81. PubMed ID: 25584418 [Abstract] [Full Text] [Related]
23. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Shinoda R, Saito T, Okita Y, Isogai A. Biomacromolecules; 2012 Mar 12; 13(3):842-9. PubMed ID: 22276990 [Abstract] [Full Text] [Related]
24. Fabrication and characterization of pullulan-based nanocomposites reinforced with montmorillonite and tempo cellulose nanofibril. Yeasmin S, Yeum JH, Yang SB. Carbohydr Polym; 2020 Jul 15; 240():116307. PubMed ID: 32475577 [Abstract] [Full Text] [Related]
25. Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate. Soeta H, Fujisawa S, Saito T, Berglund L, Isogai A. ACS Appl Mater Interfaces; 2015 May 27; 7(20):11041-6. PubMed ID: 25946413 [Abstract] [Full Text] [Related]
26. Carbon-nanotube-polymer nanocomposites for field-emission cathodes. Connolly T, Smith RC, Hernandez Y, Gun'ko Y, Coleman JN, Carey JD. Small; 2009 Apr 27; 5(7):826-31. PubMed ID: 19199333 [Abstract] [Full Text] [Related]
27. Carbon Nanotube Nanocomposites with Highly Enhanced Strength and Conductivity for Flexible Electric Circuits. Hwang JY, Kim HS, Kim JH, Shin US, Lee SH. Langmuir; 2015 Jul 21; 31(28):7844-51. PubMed ID: 26107468 [Abstract] [Full Text] [Related]
29. Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites. Choi K, Yu C. PLoS One; 2012 Jul 21; 7(9):e44977. PubMed ID: 23024778 [Abstract] [Full Text] [Related]
30. Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes. Bao WS, Meguid SA, Zhu ZH, Meguid MJ. Nanotechnology; 2011 Dec 02; 22(48):485704. PubMed ID: 22071680 [Abstract] [Full Text] [Related]
31. Free-standing nanocomposites with high conductivity and extensibility. Chun KY, Kim SH, Shin MK, Kim YT, Spinks GM, Aliev AE, Baughman RH, Kim SJ. Nanotechnology; 2013 Apr 26; 24(16):165401. PubMed ID: 23535262 [Abstract] [Full Text] [Related]
32. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. Puangsin B, Yang Q, Saito T, Isogai A. Int J Biol Macromol; 2013 Aug 26; 59():208-13. PubMed ID: 23603078 [Abstract] [Full Text] [Related]
33. Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles. Kumar NA, Bund A, Cho BG, Lim KT, Jeong YT. Nanotechnology; 2009 Jun 03; 20(22):225608. PubMed ID: 19436092 [Abstract] [Full Text] [Related]
34. Improvement of the Thermal Stability of TEMPO-Oxidized Cellulose Nanofibrils by Heat-Induced Conversion of Ionic Bonds to Amide Bonds. Lavoine N, Bras J, Saito T, Isogai A. Macromol Rapid Commun; 2016 Jul 03; 37(13):1033-9. PubMed ID: 27184669 [Abstract] [Full Text] [Related]
35. Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites. Vilčáková J, Moučka R, Svoboda P, Ilčíková M, Kazantseva N, Hřibová M, Mičušík M, Omastová M. Molecules; 2012 Nov 05; 17(11):13157-74. PubMed ID: 23128093 [Abstract] [Full Text] [Related]
36. Multifunctional role of an ionic liquid in melt-blended poly(methyl methacrylate)/ multi-walled carbon nanotube nanocomposites. Zhao L, Li Y, Cao X, You J, Dong W. Nanotechnology; 2012 Jun 29; 23(25):255702. PubMed ID: 22652559 [Abstract] [Full Text] [Related]
37. Electronic properties of conjugated polyelectrolyte/single-walled carbon nanotube composites. Li Y, Mai CK, Phan H, Liu X, Nguyen TQ, Bazan GC, Chan-Park MB. Adv Mater; 2014 Jul 16; 26(27):4697-703. PubMed ID: 24841210 [Abstract] [Full Text] [Related]
39. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO₂ systems in water at pH 4.8 or 6.8. Tanaka R, Saito T, Isogai A. Int J Biol Macromol; 2012 Oct 16; 51(3):228-34. PubMed ID: 22617623 [Abstract] [Full Text] [Related]
40. Effect of Surfactant Type and Sonication Energy on the Electrical Conductivity Properties of Nanocellulose-CNT Nanocomposite Films. Siljander S, Keinänen P, Räty A, Ramakrishnan KR, Tuukkanen S, Kunnari V, Harlin A, Vuorinen J, Kanerva M. Int J Mol Sci; 2018 Jun 20; 19(6):. PubMed ID: 29925803 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]