These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The influence of growth hormone/insulin-like growth factor deficiency on prostatic dysplasia in pbARR2-Cre, PTEN knockout mice. Takahara K, Ibuki N, Ghaffari M, Tearle H, Ong CJ, Azuma H, Gleave ME, Pollak M, Cox ME. Prostate Cancer Prostatic Dis; 2013 Sep; 16(3):239-47. PubMed ID: 23689346 [Abstract] [Full Text] [Related]
3. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Wang Z, Xu D, Ding HF, Kim J, Zhang J, Hai T, Yan C. Oncogene; 2015 Sep 17; 34(38):4975-84. PubMed ID: 25531328 [Abstract] [Full Text] [Related]
7. Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J. Oncogene; 2009 Sep 17; 28(37):3307-19. PubMed ID: 19597465 [Abstract] [Full Text] [Related]
8. Cooperation between FGF8b overexpression and PTEN deficiency in prostate tumorigenesis. Zhong C, Saribekyan G, Liao CP, Cohen MB, Roy-Burman P. Cancer Res; 2006 Feb 15; 66(4):2188-94. PubMed ID: 16489020 [Abstract] [Full Text] [Related]
9. PTEN, more than the AKT pathway. Blanco-Aparicio C, Renner O, Leal JF, Carnero A. Carcinogenesis; 2007 Jul 15; 28(7):1379-86. PubMed ID: 17341655 [Abstract] [Full Text] [Related]
13. Loss of neutral endopeptidase and activation of protein kinase B (Akt) is associated with prostate cancer progression. Osman I, Dai J, Mikhail M, Navarro D, Taneja SS, Lee P, Christos P, Shen R, Nanus DM. Cancer; 2006 Dec 01; 107(11):2628-36. PubMed ID: 17083125 [Abstract] [Full Text] [Related]
14. NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Lei Q, Jiao J, Xin L, Chang CJ, Wang S, Gao J, Gleave ME, Witte ON, Liu X, Wu H. Cancer Cell; 2006 May 01; 9(5):367-78. PubMed ID: 16697957 [Abstract] [Full Text] [Related]
16. Loss of PTEN stabilizes the lipid modifying enzyme cytosolic phospholipase A₂α via AKT in prostate cancer cells. Vignarajan S, Xie C, Yao M, Sun Y, Simanainen U, Sved P, Liu T, Dong Q. Oncotarget; 2014 Aug 15; 5(15):6289-99. PubMed ID: 25026288 [Abstract] [Full Text] [Related]
17. Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Fu Y, Wey S, Wang M, Ye R, Liao CP, Roy-Burman P, Lee AS. Proc Natl Acad Sci U S A; 2008 Dec 09; 105(49):19444-9. PubMed ID: 19033462 [Abstract] [Full Text] [Related]
18. Characterizing the contribution of stem/progenitor cells to tumorigenesis in the Pten-/-TP53-/- prostate cancer model. Abou-Kheir WG, Hynes PG, Martin PL, Pierce R, Kelly K. Stem Cells; 2010 Dec 09; 28(12):2129-40. PubMed ID: 20936707 [Abstract] [Full Text] [Related]
19. Conditionally ablated Pten in prostate basal cells promotes basal-to-luminal differentiation and causes invasive prostate cancer in mice. Lu TL, Huang YF, You LR, Chao NC, Su FY, Chang JL, Chen CM. Am J Pathol; 2013 Mar 09; 182(3):975-91. PubMed ID: 23313138 [Abstract] [Full Text] [Related]
20. PTEN deletion in luminal cells of mature prostate induces replication stress and senescence in vivo. Parisotto M, Grelet E, El Bizri R, Dai Y, Terzic J, Eckert D, Gargowitsch L, Bornert JM, Metzger D. J Exp Med; 2018 Jun 04; 215(6):1749-1763. PubMed ID: 29743291 [Abstract] [Full Text] [Related] Page: [Next] [New Search]