These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


77 related items for PubMed ID: 2343317

  • 1. [Tensile strength of plate osteosynthesis. Comparative biomechanical study of the original autocompression plate and a functional modification using the ZESPOL principle].
    Hopf T, Albert H.
    Unfallchirurg; 1990 Mar; 93(3):100-4. PubMed ID: 2343317
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. [Spongiosa formation in plate osteosynthesis--a comparative animal experiment study of current and auto-compression plates using the Zespol principle].
    Hopf T, Mittelmeier W, Mittelmeier H.
    Aktuelle Traumatol; 1989 Apr; 19(2):65-72. PubMed ID: 2565660
    [Abstract] [Full Text] [Related]

  • 4. Zespol. An original method of stable osteosynthesis.
    Ramotowski W, Granowski R.
    Clin Orthop Relat Res; 1991 Nov; (272):67-75. PubMed ID: 1934753
    [Abstract] [Full Text] [Related]

  • 5. Biomechanical comparison of polyaxial and uniaxial locking plate fixation in a proximal tibial gap model.
    Cullen AB, Curtiss S, Lee MA.
    J Orthop Trauma; 2009 Aug; 23(7):507-13. PubMed ID: 19633460
    [Abstract] [Full Text] [Related]

  • 6. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate.
    Krischak GD, Augat P, Beck A, Arand M, Baier B, Blakytny R, Gebhard F, Claes L.
    Clin Biomech (Bristol); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766
    [Abstract] [Full Text] [Related]

  • 7. [Experimental studies of the optimal plate pre-bending angle in compression osteosynthesis with reference to the plastic-elastic behavior of the osteosynthesis plate].
    Krapf WP, Hopf T.
    Z Orthop Ihre Grenzgeb; 1986 Dec; 124(5):592-8. PubMed ID: 3811484
    [Abstract] [Full Text] [Related]

  • 8. Less rigid internal fixation plates: historical perspectives and new concepts.
    Woo SL, Lothringer KS, Akeson WH, Coutts RD, Woo YK, Simon BR, Gomez MA.
    J Orthop Res; 1984 Dec; 1(4):431-49. PubMed ID: 6491792
    [Abstract] [Full Text] [Related]

  • 9. Transpedicular plate fixator as effective system of spine stabilisation: biomechanical characteristics.
    Pawłowski P, Araszkiewicz M, Topoliński T, Matewski D.
    Arch Orthop Trauma Surg; 2008 Oct; 128(10):1127-36. PubMed ID: 18408945
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Biomechanical analysis of distal femur fracture fixation: fixed-angle screw-plate construct versus condylar blade plate.
    Higgins TF, Pittman G, Hines J, Bachus KN.
    J Orthop Trauma; 2007 Jan; 21(1):43-6. PubMed ID: 17211268
    [Abstract] [Full Text] [Related]

  • 12. Screw orientation and plate type (variable- vs. fixed-angle) effect strength of fixation for in vitro biomechanical testing of the Synthes CSLP.
    Dipaola CP, Jacobson JA, Awad H, Conrad BP, Rechtine GR.
    Spine J; 2008 Jan; 8(5):717-22. PubMed ID: 17983846
    [Abstract] [Full Text] [Related]

  • 13. Biomechanical stability of different fixation constructs for ORIF of radial neck fractures.
    Capo JT, Svach D, Ahsgar J, Orillaza NS, Sabatino CT.
    Orthopedics; 2008 Oct; 31(10):. PubMed ID: 19226014
    [Abstract] [Full Text] [Related]

  • 14. The comparative stability of screw versus plate versus screw and plate coronoid fixation.
    Budoff JE, Meyers DN, Ambrose CG.
    J Hand Surg Am; 2011 Feb; 36(2):238-45. PubMed ID: 21276887
    [Abstract] [Full Text] [Related]

  • 15. [Biomechanical comparative study of three types of osteosynthesis in the treatment of supra and intercondylar fractures of the humerus in adults].
    Fornasiéri C, Staub C, Tourné Y, Rumelhart C, Saragaglia D.
    Rev Chir Orthop Reparatrice Appar Mot; 1997 Feb; 83(3):237-42. PubMed ID: 9255359
    [Abstract] [Full Text] [Related]

  • 16. Fixation properties of a biodegradable "free-form" osteosynthesis plate.
    Väänänen P, Nurmi JT, Nuutinen JP, Jakonen S, Happonen H, Jank S.
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 Oct; 106(4):477-82. PubMed ID: 18554937
    [Abstract] [Full Text] [Related]

  • 17. The effect of divergent screw placement on the initial strength of plate-to-bone fixation.
    Robert KQ, Chandler R, Baratta RV, Thomas KA, Harris MB.
    J Trauma; 2003 Dec; 55(6):1139-44. PubMed ID: 14676661
    [Abstract] [Full Text] [Related]

  • 18. Comparison of three different plating techniques for the dorsum of the distal radius: a biomechanical study.
    Peine R, Rikli DA, Hoffmann R, Duda G, Regazzoni P.
    J Hand Surg Am; 2000 Jan; 25(1):29-33. PubMed ID: 10642470
    [Abstract] [Full Text] [Related]

  • 19. Cadaveric-biomechanical evaluation of bone-implant construct of proximal humerus fractures (Neer type 3).
    Fankhauser F, Schippinger G, Weber K, Heinz S, Quehenberger F, Boldin C, Bratschitsch G, Szyszkowitz R, Georg L, Friedrich A.
    J Trauma; 2003 Aug; 55(2):345-9. PubMed ID: 12913647
    [Abstract] [Full Text] [Related]

  • 20. Experimental spiral fractures. An in vitro biomechanical comparison of lag-screw fixation to plate fixation.
    Cox LG, Dahners LE, Gilbert JA.
    Clin Orthop Relat Res; 1989 Jun; (243):189-94. PubMed ID: 2721062
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.