These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


320 related items for PubMed ID: 23435006

  • 1. Optical absorption analysis and optimization of gold nanoshells.
    Tuersun P, Han X.
    Appl Opt; 2013 Feb 20; 52(6):1325-9. PubMed ID: 23435006
    [Abstract] [Full Text] [Related]

  • 2. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D, Xu X, Liu X.
    J Chem Phys; 2008 Aug 21; 129(7):074711. PubMed ID: 19044796
    [Abstract] [Full Text] [Related]

  • 3. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.
    Bardhan R, Grady NK, Ali T, Halas NJ.
    ACS Nano; 2010 Oct 26; 4(10):6169-79. PubMed ID: 20860401
    [Abstract] [Full Text] [Related]

  • 4. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA.
    J Phys Chem B; 2006 Apr 13; 110(14):7238-48. PubMed ID: 16599493
    [Abstract] [Full Text] [Related]

  • 5. Improved synthesis of gold and silver nanoshells.
    Brito-Silva AM, Sobral-Filho RG, Barbosa-Silva R, de Araújo CB, Galembeck A, Brolo AG.
    Langmuir; 2013 Apr 02; 29(13):4366-72. PubMed ID: 23472978
    [Abstract] [Full Text] [Related]

  • 6. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment.
    Pustovalov V, Astafyeva L, Jean B.
    Nanotechnology; 2009 Jun 03; 20(22):225105. PubMed ID: 19433875
    [Abstract] [Full Text] [Related]

  • 7. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.
    Li CH, Jamison AC, Rittikulsittichai S, Lee TC, Lee TR.
    ACS Appl Mater Interfaces; 2014 Nov 26; 6(22):19943-50. PubMed ID: 25321928
    [Abstract] [Full Text] [Related]

  • 8. High-order nonlinearity of silica-gold nanoshells in chloroform at 1560 nm.
    Falcão-Filho EL, Barbosa-Silva R, Sobral-Filho RG, Brito-Silva AM, Galembeck A, de Araújo CB.
    Opt Express; 2010 Oct 11; 18(21):21636-44. PubMed ID: 20941062
    [Abstract] [Full Text] [Related]

  • 9. X-ray absorption of gold nanoparticles with thin silica shell.
    Park YS, Liz-Marzán LM, Kasuya A, Kobayashi Y, Nagao D, Konno M, Mamykin S, Dmytruk A, Takeda M, Ohuchi N.
    J Nanosci Nanotechnol; 2006 Nov 11; 6(11):3503-6. PubMed ID: 17252799
    [Abstract] [Full Text] [Related]

  • 10. Metal nanoshells.
    Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, West JL.
    Ann Biomed Eng; 2006 Jan 11; 34(1):15-22. PubMed ID: 16528617
    [Abstract] [Full Text] [Related]

  • 11. Quantitative comparison of delta P1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating.
    Elliott AM, Schwartz J, Wang J, Shetty AM, Bourgoyne C, O'Neal DP, Hazle JD, Stafford RJ.
    Med Phys; 2009 Apr 11; 36(4):1351-8. PubMed ID: 19472642
    [Abstract] [Full Text] [Related]

  • 12. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells.
    Ayala-Orozco C, Urban C, Knight MW, Urban AS, Neumann O, Bishnoi SW, Mukherjee S, Goodman AM, Charron H, Mitchell T, Shea M, Roy R, Nanda S, Schiff R, Halas NJ, Joshi A.
    ACS Nano; 2014 Jun 24; 8(6):6372-81. PubMed ID: 24889266
    [Abstract] [Full Text] [Related]

  • 13. Photothermal bubbles as optical scattering probes for imaging living cells.
    Hleb EY, Hu Y, Drezek RA, Hafner JH, Lapotko DO.
    Nanomedicine (Lond); 2008 Dec 24; 3(6):797-812. PubMed ID: 19025454
    [Abstract] [Full Text] [Related]

  • 14. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA.
    Acc Chem Res; 2008 Dec 24; 41(12):1578-86. PubMed ID: 18447366
    [Abstract] [Full Text] [Related]

  • 15. Potentials and pitfalls of gold-silica nanoshell as the exogenous contrast agent for optical diagnosis of cancers: a numerical parametric study.
    Xu X.
    Lasers Med Sci; 2019 Apr 24; 34(3):615-628. PubMed ID: 30350124
    [Abstract] [Full Text] [Related]

  • 16. Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles.
    Bu Y, Lee S.
    ACS Appl Mater Interfaces; 2012 Aug 24; 4(8):3923-31. PubMed ID: 22833686
    [Abstract] [Full Text] [Related]

  • 17. Symmetry breaking in gold-silica-gold multilayer nanoshells.
    Hu Y, Noelck SJ, Drezek RA.
    ACS Nano; 2010 Mar 23; 4(3):1521-8. PubMed ID: 20146507
    [Abstract] [Full Text] [Related]

  • 18. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer.
    Xie HN, Larmour IA, Chen YC, Wark AW, Tileli V, McComb DW, Faulds K, Graham D.
    Nanoscale; 2013 Jan 21; 5(2):765-71. PubMed ID: 23233034
    [Abstract] [Full Text] [Related]

  • 19. Nanoscale subsurface- and material-specific identification of single nanoparticles.
    Nuño Z, Hessler B, Ochoa J, Shon YS, Bonney C, Abate Y.
    Opt Express; 2011 Oct 10; 19(21):20865-75. PubMed ID: 21997096
    [Abstract] [Full Text] [Related]

  • 20. Nanoshell-enabled photonics-based imaging and therapy of cancer.
    Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R.
    Technol Cancer Res Treat; 2004 Feb 10; 3(1):33-40. PubMed ID: 14750891
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.