These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
293 related items for PubMed ID: 23438088
1. Atmospheric oxidation mechanism of phenol initiated by OH radical. Xu C, Wang L. J Phys Chem A; 2013 Mar 21; 117(11):2358-64. PubMed ID: 23438088 [Abstract] [Full Text] [Related]
2. Important yet Overlooked HONO Source from Aqueous-phase Photochemical Oxidation of Nitrophenols. Yang W, Ji H, Li F, He X, Zhang S, Nan X, Du T, Li K, Han C. Environ Sci Technol; 2024 Sep 03; 58(35):15722-15731. PubMed ID: 39175437 [Abstract] [Full Text] [Related]
3. Quantum chemical investigation on the mechanism and kinetics of OH radical-initiated atmospheric oxidation of PCB-47. Sun Y, Zhang Q, Wang H, Wang W. Chemosphere; 2015 Aug 03; 133():53-60. PubMed ID: 25898309 [Abstract] [Full Text] [Related]
4. Theoretical perspectives on the mechanism and kinetics of the OH radical-initiated gas-phase oxidation of PCB126 in the atmosphere. Dang J, Shi X, Zhang Q, Wang W. Sci Total Environ; 2015 Jun 01; 517():1-9. PubMed ID: 25721142 [Abstract] [Full Text] [Related]
5. Kinetics and mechanism of the tropospheric oxidation of vinyl acetate initiated by OH radical: a theoretical study. Mandal D, Sahu C, Bagchi S, Das AK. J Phys Chem A; 2013 May 09; 117(18):3739-50. PubMed ID: 23586638 [Abstract] [Full Text] [Related]
6. Atmospheric chemistry of enols: a theoretical study of the vinyl alcohol + OH + O(2) reaction mechanism. So S, Wille U, da Silva G. Environ Sci Technol; 2014 Jun 17; 48(12):6694-701. PubMed ID: 24844308 [Abstract] [Full Text] [Related]
7. Atmospheric oxidation mechansim of polychlorinated biphenyls (PCBs) initiated by OH radicals. Liao Z, Zeng M, Wang L. Chemosphere; 2020 Feb 17; 240():124756. PubMed ID: 31563106 [Abstract] [Full Text] [Related]
8. Atmospheric oxidation mechanism of chlorobenzene. Wu R, Wang S, Wang L. Chemosphere; 2014 Sep 17; 111():537-44. PubMed ID: 24997963 [Abstract] [Full Text] [Related]
9. Hydroxyl radical initiated oxidation of s-triazine: hydrogen abstraction is faster than hydroxyl addition. da Silva G, Bozzelli JW, Asatryan R. J Phys Chem A; 2009 Jul 30; 113(30):8596-606. PubMed ID: 19572687 [Abstract] [Full Text] [Related]
10. Formation of nitro products from the gas-phase OH radical-initiated reactions of toluene, naphthalene, and biphenyl: effect of NO2 concentration. Nishino N, Atkinson R, Arey J. Environ Sci Technol; 2008 Dec 15; 42(24):9203-9. PubMed ID: 19174893 [Abstract] [Full Text] [Related]
11. Kinetics of alpha-hydroxy-alkylperoxyl radicals in oxidation processes. HO2*-initiated oxidation of ketones/aldehydes near the tropopause. Hermans I, Müller JF, Nguyen TL, Jacobs PA, Peeters J. J Phys Chem A; 2005 May 19; 109(19):4303-11. PubMed ID: 16833760 [Abstract] [Full Text] [Related]
12. Atmospheric reactions of 9,10-anthraquinone. Miet K, Albinet A, Budzinski H, Villenave E. Chemosphere; 2014 Jul 19; 107():1-6. PubMed ID: 24875864 [Abstract] [Full Text] [Related]
13. The OH-initiated atmospheric reaction mechanism and kinetics for levoglucosan emitted in biomass burning. Bai J, Sun X, Zhang C, Xu Y, Qi C. Chemosphere; 2013 Nov 19; 93(9):2004-10. PubMed ID: 23948612 [Abstract] [Full Text] [Related]
14. Mutual sensitization of the oxidation of nitric oxide and a natural gas blend in a JSR at elevated pressure: experimental and detailed kinetic modeling study. Dagaut P, Dayma G. J Phys Chem A; 2006 Jun 01; 110(21):6608-16. PubMed ID: 16722672 [Abstract] [Full Text] [Related]
15. Nitrosation by peroxynitrite: use of phenol as a probe. Uppu RM, Lemercier JN, Squadrito GL, Zhang H, Bolzan RM, Pryor WA. Arch Biochem Biophys; 1998 Oct 01; 358(1):1-16. PubMed ID: 9750159 [Abstract] [Full Text] [Related]
16. Thermochemical and kinetic analysis on the reactions of O2 with products from OH addition to isobutene, 2-hydroxy-1,1-dimethylethyl, and 2-hydroxy-2-methylpropyl radicals: HO2 formation from oxidation of neopentane, Part II. Sun H, Bozzelli JW, Law CK. J Phys Chem A; 2007 Jun 14; 111(23):4974-86. PubMed ID: 17511431 [Abstract] [Full Text] [Related]
17. Experimental and theoretical understanding of the gas phase oxidation of atmospheric amides with OH radicals: kinetics, products, and mechanisms. Borduas N, da Silva G, Murphy JG, Abbatt JP. J Phys Chem A; 2015 May 14; 119(19):4298-308. PubMed ID: 25019427 [Abstract] [Full Text] [Related]
18. Theoretical study on the gas phase reaction of sulfuric acid with hydroxyl radical in the presence of water. Long B, Zhang WJ, Tan XF, Long ZW, Wang YB, Ren DS. J Phys Chem A; 2011 Mar 03; 115(8):1350-7. PubMed ID: 21302904 [Abstract] [Full Text] [Related]
19. Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of NO2 concentration. Nishino N, Arey J, Atkinson R. J Phys Chem A; 2010 Sep 23; 114(37):10140-7. PubMed ID: 20804209 [Abstract] [Full Text] [Related]
20. Kinetics and mechanism of OH-initiated atmospheric oxidation of organophosphorus plasticizers: A computational study on tri-p-cresyl phosphate. Li C, Zheng S, Chen J, Xie HB, Zhang YN, Zhao Y, Du Z. Chemosphere; 2018 Jun 23; 201():557-563. PubMed ID: 29533805 [Abstract] [Full Text] [Related] Page: [Next] [New Search]