These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
340 related items for PubMed ID: 23438815
1. Canonical terminal patterning is an evolutionary novelty. Duncan EJ, Benton MA, Dearden PK. Dev Biol; 2013 May 01; 377(1):245-61. PubMed ID: 23438815 [Abstract] [Full Text] [Related]
2. Evolution of the insect terminal patterning system--insights from the milkweed bug, Oncopeltus fasciatus. Weisbrod A, Cohen M, Chipman AD. Dev Biol; 2013 Aug 01; 380(1):125-31. PubMed ID: 23665175 [Abstract] [Full Text] [Related]
3. Tailless patterning functions are conserved in the honeybee even in the absence of Torso signaling. Wilson MJ, Dearden PK. Dev Biol; 2009 Nov 01; 335(1):276-87. PubMed ID: 19735651 [Abstract] [Full Text] [Related]
4. Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Wilson MJ, Dearden PK. Development; 2011 Aug 01; 138(16):3497-507. PubMed ID: 21771808 [Abstract] [Full Text] [Related]
5. Evolution of the Torso activation cassette, a pathway required for terminal patterning and moulting. Skelly J, Pushparajan C, Duncan EJ, Dearden PK. Insect Mol Biol; 2019 Jun 01; 28(3):392-408. PubMed ID: 30548465 [Abstract] [Full Text] [Related]
6. Capturing embryonic development from metamorphosis: how did the terminal patterning signalling pathway of Drosophila evolve? Duncan EJ, Johnson TK, Whisstock JC, Warr CG, Dearden PK. Curr Opin Insect Sci; 2014 Jul 01; 1():45-51. PubMed ID: 32846729 [Abstract] [Full Text] [Related]
7. The evolution of oocyte patterning in insects: multiple cell-signaling pathways are active during honeybee oogenesis and are likely to play a role in axis patterning. Wilson MJ, Abbott H, Dearden PK. Evol Dev; 2011 Jul 01; 13(2):127-37. PubMed ID: 21410869 [Abstract] [Full Text] [Related]
8. The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs. Duncan EJ, Leask MP, Dearden PK. Dev Biol; 2013 May 01; 377(1):262-74. PubMed ID: 23416037 [Abstract] [Full Text] [Related]
9. Transcriptome sequencing reveals maelstrom as a novel target gene of the terminal system in the red flour beetle Tribolium castaneum. Pridöhl F, Weißkopf M, Koniszewski N, Sulzmaier A, Uebe S, Ekici AB, Schoppmeier M. Development; 2017 Apr 01; 144(7):1339-1349. PubMed ID: 28232603 [Abstract] [Full Text] [Related]
10. The evolution of developmental gene networks: lessons from comparative studies on holometabolous insects. Peel AD. Philos Trans R Soc Lond B Biol Sci; 2008 Apr 27; 363(1496):1539-47. PubMed ID: 18192180 [Abstract] [Full Text] [Related]
12. Evolution of extracellular Dpp modulators in insects: The roles of tolloid and twisted-gastrulation in dorsoventral patterning of the Tribolium embryo. Nunes da Fonseca R, van der Zee M, Roth S. Dev Biol; 2010 Sep 01; 345(1):80-93. PubMed ID: 20510683 [Abstract] [Full Text] [Related]
13. Evolution of insect development: to the hemimetabolous paradigm. Mito T, Nakamura T, Noji S. Curr Opin Genet Dev; 2010 Aug 01; 20(4):355-61. PubMed ID: 20462751 [Abstract] [Full Text] [Related]
18. Early patterning and blastodermal fate map of the head in the milkweed bug Oncopeltus fasciatus. Birkan M, Schaeper ND, Chipman AD. Evol Dev; 2011 Apr 01; 13(5):436-47. PubMed ID: 23016905 [Abstract] [Full Text] [Related]