These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 23440957

  • 1. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells.
    Jean J, Chang S, Brown PR, Cheng JJ, Rekemeyer PH, Bawendi MG, Gradečak S, Bulović V.
    Adv Mater; 2013 May 28; 25(20):2790-6. PubMed ID: 23440957
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.
    Leschkies KS, Divakar R, Basu J, Enache-Pommer E, Boercker JE, Carter CB, Kortshagen UR, Norris DJ, Aydil ES.
    Nano Lett; 2007 Jun 28; 7(6):1793-8. PubMed ID: 17503867
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Fabrication of PbS nanoparticle-sensitized TiO₂ nanotube arrays and their photoelectrochemical properties.
    Kang Q, Liu S, Yang L, Cai Q, Grimes CA.
    ACS Appl Mater Interfaces; 2011 Mar 28; 3(3):746-9. PubMed ID: 21306125
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure.
    Zhou N, Yang Y, Huang X, Wu H, Luo Y, Li D, Meng Q.
    ChemSusChem; 2013 Apr 28; 6(4):687-92. PubMed ID: 23495072
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. An energy-harvesting scheme employing CuGaSe2 quantum dot-modified ZnO buffer layers for drastic conversion efficiency enhancement in inorganic-organic hybrid solar cells.
    Ho CR, Tsai ML, Jhuo HJ, Lien DH, Lin CA, Tsai SH, Wei TC, Huang KP, Chen SA, He JH.
    Nanoscale; 2013 Jul 21; 5(14):6350-5. PubMed ID: 23455444
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Microwave assisted CdSe quantum dot deposition on TiO2 films for dye-sensitized solar cells.
    Zhu G, Pan L, Xu T, Zhao Q, Lu B, Sun Z.
    Nanoscale; 2011 May 21; 3(5):2188-93. PubMed ID: 21451826
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics.
    Jeong KS, Tang J, Liu H, Kim J, Schaefer AW, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent EH, Asbury JB.
    ACS Nano; 2012 Jan 24; 6(1):89-99. PubMed ID: 22168594
    [Abstract] [Full Text] [Related]

  • 18. Nanowire dye-sensitized solar cells.
    Law M, Greene LE, Johnson JC, Saykally R, Yang P.
    Nat Mater; 2005 Jun 24; 4(6):455-9. PubMed ID: 15895100
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. CdS-decorated ZnO nanorod heterostructures for improved hybrid photovoltaic devices.
    Rakshit T, Mondal SP, Manna I, Ray SK.
    ACS Appl Mater Interfaces; 2012 Nov 24; 4(11):6085-95. PubMed ID: 23082825
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.