These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
246 related items for PubMed ID: 23442113
21. Lead bioavailability in different fractions of mining- and smelting-contaminated soils based on a sequential extraction and mouse kidney model. Li SW, Li MY, Sun HJ, Li HB, Ma LQ. Environ Pollut; 2020 Jul; 262():114253. PubMed ID: 32179223 [Abstract] [Full Text] [Related]
22. [Effect of sulfur on the species of Fe and As under redox condition in paddy soil]. Tang BP, Yang SJ, Wang DZ, Rao W, Zhang YN, Wang D, Zhu YJ. Huan Jing Ke Xue; 2014 Oct; 35(10):3851-61. PubMed ID: 25693393 [Abstract] [Full Text] [Related]
23. Arsenic biogeochemistry and human health risk assessment in organo-arsenical pesticide-applied acidic and alkaline soils: an incubation study. Datta R, Sarkar D, Sharma S, Sand K. Sci Total Environ; 2006 Dec 15; 372(1):39-48. PubMed ID: 16973204 [Abstract] [Full Text] [Related]
24. Differential in vitro bioaccessibility of residual As in a field-aged former smelter site and its implication for potential risk. Jeong S, Moon HS, Nam K. Sci Total Environ; 2013 Oct 01; 463-464():348-54. PubMed ID: 23820009 [Abstract] [Full Text] [Related]
25. Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate. Datta R, Makris KC, Sarkar D. Arch Environ Contam Toxicol; 2007 May 01; 52(4):475-82. PubMed ID: 17387422 [Abstract] [Full Text] [Related]
26. Arsenic fractionation in agricultural acid soils from NW Spain using a sequential extraction procedure. Nóvoa-Muñoz JC, Queijeiro JM, Blanco-Ward D, Alvarez-Olleros C, García-Rodeja E, Martínez-Cortizas A. Sci Total Environ; 2007 May 25; 378(1-2):18-22. PubMed ID: 17289117 [Abstract] [Full Text] [Related]
27. Effects of dissolution kinetics on bioaccessible arsenic from tailings and soils. Meunier L, Koch I, Reimer KJ. Chemosphere; 2011 Sep 25; 84(10):1378-85. PubMed ID: 21703661 [Abstract] [Full Text] [Related]
28. The bioaccessibility and fractionation of arsenic in anoxic soils as a function of stabilization using low-cost Fe/Al-based materials: A long-term experiment. Hou Q, Han D, Zhang Y, Han M, Huang G, Xiao L. Ecotoxicol Environ Saf; 2020 Mar 15; 191():110210. PubMed ID: 31958624 [Abstract] [Full Text] [Related]
29. An in vitro method for estimation of arsenic relative bioavailability in soil. Brattin W, Drexler J, Lowney Y, Griffin S, Diamond G, Woodbury L. J Toxicol Environ Health A; 2013 Mar 15; 76(7):458-78. PubMed ID: 23611184 [Abstract] [Full Text] [Related]
30. Arsenic fractionation in agricultural soil using an automated three-step sequential extraction method coupled to hydride generation-atomic fluorescence spectrometry. Rosas-Castor JM, Portugal L, Ferrer L, Guzmán-Mar JL, Hernández-Ramírez A, Cerdà V, Hinojosa-Reyes L. Anal Chim Acta; 2015 May 18; 874():1-10. PubMed ID: 25910440 [Abstract] [Full Text] [Related]
31. Bioavailability/speciation of arsenic in atmospheric PM2.5 and their seasonal variation: A case study in Baoding city, China. Xie JJ, Yuan CG, Shen YW, Xie J, He KQ, Zhu HT, Zhang KG. Ecotoxicol Environ Saf; 2019 Mar 18; 169():487-495. PubMed ID: 30472473 [Abstract] [Full Text] [Related]
32. Bioaccessibility of lead sequestered to corundum and ferrihydrite in a simulated gastrointestinal system. Beak DG, Basta NT, Scheckel KG, Traina SJ. J Environ Qual; 2006 Mar 18; 35(6):2075-83. PubMed ID: 17071876 [Abstract] [Full Text] [Related]
33. Fractionation and bioavailability of arsenic in agricultural soils: solvent extraction tests and their relevance in risk assessment. Cornejo-Ponce L, Acarapi-Cartes J. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011 Mar 18; 46(11):1247-58. PubMed ID: 21879857 [Abstract] [Full Text] [Related]
34. Aluminum fractionation in acidic soils and river sediments in the Upper Mero basin (Galicia, NW Spain). Palleiro L, Patinha C, Rodríguez-Blanco ML, Taboada-Castro MM, Taboada-Castro MT. Environ Geochem Health; 2018 Oct 18; 40(5):1803-1815. PubMed ID: 28342154 [Abstract] [Full Text] [Related]
35. Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils. Bradham KD, Nelson C, Juhasz AL, Smith E, Scheckel K, Obenour DR, Miller BW, Thomas DJ. Environ Sci Technol; 2015 May 19; 49(10):6312-8. PubMed ID: 25965337 [Abstract] [Full Text] [Related]
36. Measurement modelling and mapping of arsenic bioaccessibility in Northampton, United Kingdom. Cave MR, Wragg J, Harrison H. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013 May 19; 48(6):629-40. PubMed ID: 23442114 [Abstract] [Full Text] [Related]
37. Effect of aging on bioaccessibility of arsenic and lead in soils. Liang S, Guan DX, Li J, Zhou CY, Luo J, Ma LQ. Chemosphere; 2016 May 19; 151():94-100. PubMed ID: 26930247 [Abstract] [Full Text] [Related]
38. Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils. Smith E, Weber J, Juhasz AL. Environ Geochem Health; 2009 Apr 19; 31 Suppl 1():85-92. PubMed ID: 19224377 [Abstract] [Full Text] [Related]
39. Estimation of the bioaccessible arsenic fraction in soils using near infrared spectroscopy. Cave M, Taylor H, Wragg J. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jul 15; 42(9):1293-301. PubMed ID: 17654149 [Abstract] [Full Text] [Related]
40. Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions. Li J, Li K, Cave M, Li HB, Ma LQ. J Hazard Mater; 2015 Sep 15; 295():55-62. PubMed ID: 25911623 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]