These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 23443621
1. Layer-by-layer micromolding of natural biopolymer scaffolds with intrinsic microfluidic networks. He J, Wang Y, Liu Y, Li D, Jin Z. Biofabrication; 2013 Jun; 5(2):025002. PubMed ID: 23443621 [Abstract] [Full Text] [Related]
2. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Wang XY, Jin ZH, Gan BW, Lv SW, Xie M, Huang WH. Lab Chip; 2014 Aug 07; 14(15):2709-16. PubMed ID: 24887141 [Abstract] [Full Text] [Related]
3. Ice-template-induced silk fibroin-chitosan scaffolds with predefined microfluidic channels and fully porous structures. Mao M, He J, Liu Y, Li X, Li D. Acta Biomater; 2012 Jul 07; 8(6):2175-84. PubMed ID: 22269914 [Abstract] [Full Text] [Related]
4. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device. Hamid Q, Snyder J, Wang C, Timmer M, Hammer J, Guceri S, Sun W. Biofabrication; 2011 Sep 07; 3(3):034109. PubMed ID: 21727312 [Abstract] [Full Text] [Related]
6. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel. He J, Chen R, Lu Y, Zhan L, Liu Y, Li D, Jin Z. Mater Sci Eng C Mater Biol Appl; 2016 Feb 07; 59():53-60. PubMed ID: 26652348 [Abstract] [Full Text] [Related]
7. Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique. Koroleva A, Gittard S, Schlie S, Deiwick A, Jockenhoevel S, Chichkov B. Biofabrication; 2012 Mar 07; 4(1):015001. PubMed ID: 22257958 [Abstract] [Full Text] [Related]
8. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Alamein MA, Stephens S, Liu Q, Skabo S, Warnke PH. Tissue Eng Part C Methods; 2013 Jun 07; 19(6):458-72. PubMed ID: 23102268 [Abstract] [Full Text] [Related]
9. Fabrication of nature-inspired microfluidic network for perfusable tissue constructs. He J, Mao M, Liu Y, Shao J, Jin Z, Li D. Adv Healthc Mater; 2013 Aug 07; 2(8):1108-13. PubMed ID: 23554383 [Abstract] [Full Text] [Related]
12. Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process. Ahn S, Lee S, Cho Y, Chun W, Kim G. Bioprocess Biosyst Eng; 2011 Sep 07; 34(7):903-11. PubMed ID: 21472408 [Abstract] [Full Text] [Related]
13. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue. Kang TY, Hong JM, Jung JW, Yoo JJ, Cho DW. Langmuir; 2013 Jan 15; 29(2):701-9. PubMed ID: 23234496 [Abstract] [Full Text] [Related]
15. Scaffold pore space modulation through intelligent design of dissolvable microparticles. Liebschner MA, Wettergreen M. Methods Mol Biol; 2012 Jan 15; 868():71-89. PubMed ID: 22692605 [Abstract] [Full Text] [Related]
16. Virtual topological optimisation of scaffolds for rapid prototyping. Almeida Hde A, Bártolo PJ. Med Eng Phys; 2010 Sep 15; 32(7):775-82. PubMed ID: 20620093 [Abstract] [Full Text] [Related]
17. Tailor-made biopolymers porous scaffold fabrication for tissue engineering: application of radiant energy in the form of microwave under vacuum. Jaya S, Durance TD. Biomed Mater Eng; 2008 Sep 15; 18(6):357-66. PubMed ID: 19197112 [Abstract] [Full Text] [Related]